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1 | INTRODUCTION

The distribution and life history traits of marine predators are influ-
enced by the distribution and abundance of their prey, which are
themselves affected by physical and biological factors. Therefore, ma-
rine top predators are touted as sentinels of marine ecosystems, which
potentially integrate diverse and complex environmental signals (e.g.,
Boyd & Murray, 2001; Durant et al., 2009; Moore, 2008). Accordingly,
areas with a high abundance or diversity of foraging top predators are
regarded as representing ecologically important areas (Block, Costa,
Boehlert, & Kochevar, 2003; Hazen et al., 2013). Predators may also
have significant top-down effects on ecosystems (Baum & Worm,
2009; Heithaus, Frid, Wirsing, & Worm, 2008). Quantitative infor-
mation on the spatial distribution of marine predator assemblages is
therefore required to better understand and manage marine systems.
This is particularly so given the increasing anthropogenic impacts on
the oceans (Halpern et al., 2015; Maxwell et al., 2013). While the dis-
tributions of many marine predator species are becoming well-known,
there is an increasing emphasis on considering species assemblages
to identify important ecological areas and common drivers of distri-
bution and habitat use (e.g., Block et al., 2011; Patterson et al., 2016;
Raymond et al., 2015; Thiers, Delord, Bost, Guinet, & Weimerskirch,
2017).

The Southern Ocean is a vast area interspersed with very few ter-
restrial sites where seabirds and seals can breed. One such island group
is the Prince Edward Islands, comprising Marion Island and Prince
Edward Island. At least 29 seabird species and three seal species breed
there—collectively numbering millions of individuals—making the
Prince Edward Islands a globally significant site for seabirds and seals
(Ryan & Bester, 2008). In 2013, South Africa declared a 180,633 km?
marine protected area in the exclusive economic zone (EEZ) surround-
ing the islands, partly to protect this biodiversity (Lombard et al., 2007).
A number of seabird species breeding at the islands have a threatened
or near-threatened conservation status (Table S1). Wide-scale en-

vironmental changes in the southern Indian Ocean have influenced

Results: Real tracking locations covered 39.75 million km?, up to 7,813 km from the
Prince Edward Islands. Areas of high mean importance were located broadly from the
Subtropical Zone to the Polar Frontal Zone in summer and from the Subantarctic to
Antarctic Zones in winter. Areas of high mean importance were best predicted by fac-
tors including wind speed, sea surface temperature, depth and current speed.

Main conclusions: The models and predictions developed here identify important habi-
tat of marine predators around the Prince Edward Islands and can support the large-
scale conservation and management of Subantarctic ecosystems and the marine
predators they sustain. The results also form the basis of future efforts to predict the

consequences of environmental change.

areas of ecological significance, distribution, distribution models, hotspots, marine mammals,

marine protected areas, seabirds

the population sizes of several seal and seabird species breeding at
Subantarctic islands (Weimerskirch, Inchausti, Guinet, & Barbraud,
2003). At the Prince Edward Islands, mean sea surface temperatures
increased by 1.4°C from 1949 to 1998 (Mélice, Lutjeharms, Rouault, &
Ansorge, 2003) and such changes, coupled with changes in prey abun-
dance and distribution, are thought to affect the abundance and life
history parameters of several top predators breeding there (Crawford,
Dyer, Upfold, & Makhado, 2014; Wege, Etienne, et al., 2016).

Seabirds and marine mammals at the Prince Edward Islands have
been studied since the 1950s (Bester et al., 2011; Cooper & Brown,
1990), with the first studies using tracking devices to investigate their
at-sea distribution conducted in the early 1990s (Bester & Pansegrouw,
1992). Despite decades of research, most studies have focussed on in-
dividual species and no study has considered the distribution of an as-
semblage of top predators from the Prince Edward Islands. Thus, there
is a significant gap in our understanding of the common patterns and
drivers of marine predator distribution, and therefore the ecologically
significant areas, in this region.

In this study, we collate tracking data for 14 species, including 10
seabirds, 3 seals and 1 cetacean from the Prince Edward Islands, to
contribute to a broader understanding of the distribution and habitat
use of marine top predators in the Southern Indian Ocean. Specifically,
we build habitat preference models for each species, based on a set of
environmental covariates, and predict areas of high habitat preference.
We then combine these preference scores for all species to identify
common areas of high preference. We focus on overlap and common-
ality at meso-scales (10 s-100 s of km), at which oceanographic and
environmental features are likely to impact the foraging distribution of

marine top predators.

2 | METHODS

The Prince Edward Islands (46.9°S, 37.7°E) are situated in the south-
west Indian Ocean sector of the Southern Ocean (Figure 1). The
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FIGURE 1 Location estimates for 538 tracking deployments on 14 species of marine predators at the Prince Edward Islands (filled black
point), used to model important habitat around the islands. Utilization distributions for each species are shown in Figure 2. AFS, Antarctic fur
seal; DMS, sooty albatross; GHA, grey-headed albatross; IYA, Indian yellow-nosed albatross; KIN, king penguin; LMS, light-mantled albatross;
MAC, macaroni penguin; NGP, northern giant petrel; ORC, killer whale; SES, southern elephant seal; SFS, Subantarctic fur seal; SRP, rockhopper
penguin; WAB, wandering albatross; WCP, white-chinned petrel. [Colour figure can be viewed at wileyonlinelibrary.com]

islands are the summit of a volcano which rises ~5,000 m from the
surrounding seafloor. Oceanographically, the region is dominated by
the east-flowing Antarctic Circumpolar Current and three associated
fronts: the Subtropical, Subantarctic and Antarctic Polar Fronts (from
north-south) (Lutjeharms & Ansorge, 2008).

We collated published and unpublished tracking data for 14 preda-
tor species tracked from the Prince Edward Islands from 2003 to 2014
(Table 1; additional details in Table S1). Animals were tracked using a
variety of satellite-linked (Argos) and global positioning system (GPS)
tags. Details of animal capture and restraint, tags used, tag attachment
methods, ethics approval and permitting are contained in the refer-
ences cited in Table 1. After removing tracks with fewer than 30 at-sea
locations and those flagged based on visual inspection, the dataset
contained 538 individual tracks. Complete as well as incomplete tracks
were retained.

All analyses were conducted in the R environment (R Core Team,
2017). First, we pre-processed tracks using the “argosfilter” package
(Freitas, 2012) to remove position estimates that created location
spikes (turning angles <15 and 25 degrees in conjunction with dis-
placements >2.5 and 5 km, respectively) and high movement speeds
(Freitas, Lydersen, Ims, Fedak, & Kovacs, 2008). We estimated ani-
mal locations at regular time intervals by fitting a continuous-time
correlated random walk model (Johnson, London, Lea, & Durban,
2008) to each track using the “crawl” 1.5 package (Johnson, 2015).
This model accounts for errors around Argos location estimates, but
we also fit the model to GPS tracks, assuming the same accuracy
as the highest Argos location quality class. The time interval cho-
sen was the whole number nearest the median time interval in the
unprocessed tracking data for the given species and tag type (Table
S1). While the tracks therefore had different inherent accuracies,
these differences are negligible with respect to the spatial scale
of variation of the environmental data and the scale of the study.
The tracking data were classified into “summer” tracks and “winter”

tracks. The dates defining these two putative seasons for each spe-
cies were the two minima of tracking effort in approximately April
and October (Figure S1). Where a track comprised dates in both
seasons, we assigned the whole track to the season with the larger
proportion of locations.

We assessed the representativeness of the tracking data for each
species in each season by drawing curves of the cumulative number of
grid cells visited against the number of individuals tracked. The order
in which individuals were sampled was randomly shuffled to generate
1000 curves in each case. The mean of these curves was then mod-
elled as a nonlinear asymptotic regression, and the cumulative number
of cells visited as a percentage of the estimated number of cells at
the asymptote was used as a measure of the representativeness (cf.
Hindell, Bradshaw, Sumner, Michael, & Burton, 2003; Lascelles et al.,
2016).

To characterize the environment potentially available to individ-
uals, and thus allowing a case-control design for habitat preference
modelling (Aarts, MacKenzie, McConnell, Fedak, & Matthiopoulos,
2008), we simulated random or pseudo-tracks. For each real track, we
simulated 20 pseudo-tracks by fitting a first-order vector autoregres-
sive model characterized by the step lengths and turning character-
istics of the real track—estimated from the random walk model—as
detailed in Raymond et al. (2015). This maintains characteristics of the
real tracks relevant for estimating the space available to an individual
if it had no habitat preferences. This also means that characteristics
of the tracking data due to the tag type (e.g., sampling frequency) are
reflected in both the real and pseudo tracks for each individual ani-
mal, thereby minimizing any biases in the final results due to differ-
ent tag types used on different species. The number of pseudo-tracks
was chosen, as in Raymond et al. (2015), as a compromise between
adequately characterizing the available environment and limiting the
dataset size for computation. Pseudo-locations falling on land were
rejected and re-sampled.
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;f: ?Té At each real and pseudo-location, we extracted a set of 17 en-
§ e '_g g vironmental covariates—mainly remotely-sensed by satellites—using
é é *ﬁ Gn 3 E % the “raadtools” (Sumner, 2016) and “raster” (Hijmans, 2016) packages
% QE) fg § § % S LE (Table 2; additional details in Table S2). For dynamic environmental
g c% -g; o Té r%‘: _‘g“ covariates, we matched the date and time of the location to the near-
s % : & E E S -E : est environmental data in space and time. We chose widely available
-g 5 g § é é g gﬁo % environmental covariates which are commonly used to model the
B E" Tg“ habitat of marine predators (Table S2). They are assumed to represent
. Li E bio-physical factors influencing predators and/or their prey directly or
c TZ’ 5 ° é f% indirectly; however, some covariates may be proxies for unknown or
a% é 8 R % g unmeasured environmental factors.
§ "g 8 E *E % We assessed habitat preference by modelling the relationship
3 §, between the space use of animals and environmental covariates. We
. %’ g adopted the aforementioned case-control design (Aarts et al., 2008),
o g ;:3; % where location estimates from a real track were treated as presences
§ g g % (1) and the pseudo-locations from the 20 simulated tracks were treated
2 35 Z 2 as habitat potentially available to an individual (0). Classification mod-
. % j els were used to discriminate these two sets of points based on their
E ?J: environmental covariates (Table 2).
o 5 g g These habitat preference models do not explicitly account for hab-
§ E & oy itat accessibility—an important constraint for central place foragers
E § § é (such as breeding seabirds and female fur seals provisioning pups). We
o E g therefore constructed separate accessibility models for each species
2 g for prediction purposes. Here, the response was whether a given cell
= g :: contained any real or pseudo-locations (1) (i.e., it was potentially ac-
aé - ® g LZD cessible) or did not contain any location estimates (0); the sole pre-
= © R E % dictor variable was distance from colony, as we assumed accessibility
-32 q%: to be a function of distance. Predictions from the habitat preference
- é 'g models were then weighted by the predictions from the accessibility
-% % § models, yielding a prediction surface of preference, given availability.
'g E E The habitat preference predictions are not absolute estimates of the
g g L(; é B probability that a habitat is preferred and are not directly comparable
é @ % between different species (e.g., Beyer et al., 2010). To enable compari-
= ,‘15’, % _g sons between species, we therefore transformed each prediction map
*2 % % E by percentile to give a habitat importance (hereafter percentile habi-
e ) e E E tat) score (Raymond et al., 2015).
s 2 g é :§ Habitat preference scores were calculated from ensemble models
é _g, %’ ;.'D nu: (combination or set of models) which combined boosted regression
§ %’ g ; ; trees (Friedman, 2001) and random forests (Breiman, 2001). These
@ fzv E g constituent models were fitted through the “caret” (Kuhn, 2016) pack-
= % *_rg’ age (Table S3). Models were tuned by compiling sets of candidate
.Z&_ a%: E‘; models with different parameter combinations and then comparing
E g %o 'é the average area under the receiver operating characteristic curve
§ % ; § (AUC) scores—calculated from 10-fold cross-validation—of these
g E" é i 2 candidate models (Tables S3 and S4). Cross-validation folds were cre-
_ 'g § S g =z ated by randomly dividing individuals into 10 groups containing an
§ & = 3 E E g approximately equal number of individuals. The real and simulated
-é 5 'E :go tracks from any one individual were always kept together in the same
@ € § ] fold. AUC scores calculated from random cross-validation are usually
- é 4% E E overoptimistic due to spatial autocorrelation (Hijmans, 2012), but our
w > § _ § g é cross-validation scheme should result in AUC scores which reflect the
2 |.'|.E“ = g EJ’ _;E S:: generalized model performance more accurately. Indeed, AUC scores
= = un

calculated using this cross-validation scheme were on average 0.19
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lower (range = -0.31 to -0.08) than those calculated using random
stratified cross-validation during preliminary model runs. We then
created ensembles (or combinations) of these models by “stacking”
them using the “caretEnsemble” package (Deane-Mayer & Knowles,
2016). The weight of each model in the ensemble (or “stack”) is its
coefficient in a logistic regression of the model predictions (probability
of being a real location estimate) against the original outcome (real
or pseudo-location estimate) (Zhou, 2012). Model performance in all
cases was evaluated using AUC scores. To generate prediction maps,
we calculated the mean of each environmental covariate for the study
period (summer and winter separately) based on input data at the
same spatio-temporal resolution as that used to model habitat pref-
erence. We used ordinary Kriging to interpolate any missing values.
Values of these variables were then sampled on a new 0.1° x 0.1° grid
which was used for prediction. By predicting to the mean environmen-
tal conditions over the study period while matching the locations used
in the models to the spatio-temporally nearest environmental covari-
ates, the interannual variation typical of this dynamic marine system
should be accounted for to some extent. However, this assumes that
the correlation between animal behaviour and environmental covari-
ates holds across years, and interannual variation will likely still have
some unquantified influence on our output.

To evaluate which species showed similar habitat preferences, we
used affinity propagation clustering (Frey & Dueck, 2007) to iden-
tify the number and composition of clusters (“apcluster” package;
Bodenhofer, Kothmeier, & Hochreiter, 2011). For visualization, we cal-
culated kernel utilization distributions (Worton, 1989) for each species
(“adehabitatHR” package; Calenge, 2006), with h-values selected using
the ad hoc method (Silverman, 1986). Finally, we calculated mean hab-
itat importance; first, as the mean of all percentile habitat scores in
each cell. However, because the diverse suite of species in this study
can be expected to use the environment in different ways, we also
calculated mean habitat importance scores using the top 8 percentile
habitat scores for each cell and using only the top four scores—a more
lenient overlap measure (cf. Raymond et al., 2015).

For mapping and further modelling, we used only cells with mean
habitat importance in the 95th percentile. To identify the environmen-
tal variables associated with these areas of high mean importance,
we also modelled the relationship between mean importance scores
and the set of environmental covariates using a model ensemble (as
above). In this case, models were regression rather than classification
models, as the response values are continuous, and models were eval-
uated using root mean square error (RMSE) and the coefficient of de-

termination (R?).

3 | RESULTS

We analysed 538 tracks from 14 species, which yielded 244,276
at-sea location estimates, covering an area of 39.75 million km?.
Location estimates were up to 7,813 km from the deployment loca-
tion (Figure 1). More than half the location estimates (126,835; 52%)
were in the EEZ around the Prince Edward Islands, but most location

Diversity and Distributions

estimates (152,265; 62%) were outside the Prince Edward Islands
marine protected area. Few locations were in the EEZ around main-
land South Africa (3,181 locations; 1.3%). The estimated represent-
ativeness of the tracking data for each species ranged from 32.7%
(killer whales) to 96.5% (Subantarctic fur seals) during summer and
from 45.0% (killer whales) to 97.4% (Subantarctic fur seals) during
winter (Table S5).

Many species showed strong directional tendency in their move-
ment, as well as having marked differences between summer and
winter distributions (Figure 2). Based on the kernel utilization distri-
butions, species fell into several groups with similar patterns of space
use. In summer, these were species with (1) core areas south of the is-
lands (Antarctic fur seal, macaroni penguin and rockhopper penguin),
(2) around the islands and to the north (wandering albatross, sooty al-
batross, killer whale, Subantarctic fur seal and grey-headed albatross),
(3) north of the islands, particularly near South Africa (white-chinned
petrel and Indian yellow-nosed albatross), and (4) to the south-west
of the islands (southern elephant seal and light-mantled albatross)
(Figure 2). In winter, four core use areas were identified: (1) to the
southwest of the islands (macaroni penguin, Antarctic fur seal, rock-
hopper penguin, king penguin and southern elephant seal), (2) around
the islands (Subantarctic fur seal, northern giant petrel and killer
whale), (3) broadly distributed (light-mantled albatross and sooty
albatross), and (4) near South Africa (Indian yellow-nosed albatross)
(Figure 2). Overlap was generally lower in winter than in summer.

Model performance (AUC) ranged from 0.54 to 0.85. Boosted re-
gression trees generally had the highest AUC scores, but scores were
nearly always within one standard deviation of each other (Figure S2).
The predictions of models used in the ensemble generally showed
strong correlation (mean = 0.83, range = 0.44-0.99).

The predictor variables differed in their importance rank across
species and seasons, but during summer the variables sea surface
temperature (SST), distance to the ice edge (DISTICE), depth (DEP)
and primary productivity (PROD) (ranked by mean variable relative
importance across species) were often the most important predic-
tors of habitat preference (Figure S3). These four predictors had
combined importance of 28.2-84.2 (mean = 43.1) across the spe-
cies. During winter, the same four variables were generally most
important, but ranked DISTICE, DEP, PROD, SST. Their combined
importance across species was 28.7-58.0 (mean = 38.2) (Figure S3).

Cluster analysis of the percentile habitat scores indicated four spe-
cies clusters in summer and in winter. Nine species comprised a single
large cluster in summer and five species a single cluster in winter. In
summer, light-mantled sooty albatross, macaroni penguins and white-
chinned petrels each formed their own independent clusters, while in
winter killer whales, sooty albatross and Indian yellow-nosed albatross
each formed an independent cluster (Figure S4). The hierarchical clus-
tering did not match taxonomic relationships among the species.

Prediction maps for each species are shown in Figure 3. In this fig-
ure, we mapped predictions only above an arbitrarily chosen thresh-
old of 95, but generally, cells with predicted habitat importance in the
99th percentile showed good agreement with kernel utilization distri-
butions. In summer, cells with the highest mean habitat importance
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generally ranged from the approximate location of the Antarctic Polar
Front to north of the approximate location of the Subtropical Front
(Figure 4). Mean habitat importance for all species indicated the high-
est value areas around the Subantarctic Front. In contrast to the mean
importance calculated for four and eight species, the mean importance
for all species did not identify as many important cells in proximity
to the Prince Edward Islands (Figure 4). In winter, the highest mean
importance areas (four and eight species) included cells slightly further
south than in summer and areas south and south-west of the islands
in the Polar Frontal Zone were important (Figure 4). Mean importance
for all species highlighted some far-lying areas, including small patches
nearer the Antarctic continent. Waters surrounding the Crozet Islands
to the east of the Prince Edward Islands were included among import-

ant areas. Cells with high mean habitat importance for all species were

generally more patchily distributed than cells with high mean impor-
tance for four and eight species (Figure 4).

Areas with the highest mean habitat importance were often situ-
ated outside the Prince Edward Islands EEZ (Figures 4 and S5). Within
the EEZ, the proportion of important grid cells inside versus outside
the marine protected area was relatively even across mean habitat im-
portance values (Figure S5) and the marine protected area often en-
compassed cells with very high mean habitat importance (Figure S6).
Virtually all cells in the EEZ around the Prince Edward Islands met the
95th percentile threshold (see methods), and therefore, the proportion
of important cells in the marine protected area matched the propor-
tion of the EEZ represented by the marine protected area (~34%).

Ensemble models of mean habitat importance indicated that
wind (WINDV and WINDU), SST, DEP, SST gradient (SSTgrad) and

.
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FIGURE 2 Kernel utilization
distributions of 14 predator species
tracked from the Prince Edward Islands
during summer (green) and winter (purple).
Lower utilization distribution values,
typically below 50%, indicate the core
areas. Grey lines indicate positions of
major fronts after Orsi et al. (1995); from
north to south: the Subtropical Front,
— == Subantarctic Front, Antarctic Polar Front,
e Southern Antarctic Circumpolar Front and
the southern boundary of the Antarctic
Circumpolar Current. AFS, Antarctic fur
seal; DMS, sooty albatross; GHA, grey-
headed albatross; IYA, Indian yellow-
nosed albatross; KIN, king penguin; LMS,
light-mantled albatross; MAC, macaroni
penguin; NGP, northern giant petrel; ORC,
killer whale; SES, southern elephant seal;
SFS, Subantarctic fur seal; SRP, rockhopper
penguin; WAB, wandering albatross; WCP,
white-chinned petrel. [Colour figure can be
viewed at wileyonlinelibrary.com]
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FIGURE 3 Habitat preference predictions of ensemble models for 14 predator species tracked from the Prince Edward Islands during (a) summer
and (b) winter. Predictions have been percentile-transformed to yield a habitat importance score which is comparable among species, and only cells
with values >95 are shown (representing 5% of the most important cells in the study area). Grey lines show the positions of oceanographic fronts, as
in Figure 2. AFS, Antarctic fur seal; DMS, sooty albatross; GHA, grey-headed albatross; IYA, Indian yellow-nosed albatross; KIN, king penguin; LMS,
light-mantled albatross; MAC, macaroni penguin; NGP, northern giant petrel; ORC, killer whale; SES, southern elephant seal; SFS, Subantarctic fur
seal; SRP, rockhopper penguin; WAB, wandering albatross; WCP, white-chinned petrel. [Colour figure can be viewed at wileyonlinelibrary.com]

meridional current (CURRV) were generally important environmen- mean importance and environmental variables across seasons
tal predictors during summer and winter (Figure S7). Partial plots and models. During summer, areas of high mean importance are

of the predictions (Figure S8) show similar relationships between characterized by high SST, negative WINDV (i.e., northerly wind),
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(b) Winte
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FIGURE 3 (Continued)

positive WINDU (i.e., westerly wind), shallower DEP and lower 4 | DISCUSSION
SSTgrad. These relationships were similar during winter; however,

SST of important areas showed a lower peak, mean habitat impor- Using tracking data from 14 species and an ensemble modelling ap-
tance was high in very shallow and very deep areas, and distance proach, this is the first study that quantitatively describes important
to sea ice (DISTICE) of ~1,000 km was related to important areas habitats for an assemblage of marine top predators around the Prince

(Figure S8). Edward Islands in the Southern Indian Ocean. The study illustrates
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FIGURE 4 Maps showing mean habitat
importance scores for top predators
tracked from the Prince Edward Islands
during summer (left panels) and winter
(right panels). Habitat importance was
calculated as the mean of the four highest
scores in each cell (upper panels), eight
highest scores in each cell (middle panels)
and of all scores in each cell (bottom
panels). Only cells with scores in the 95th
percentile are shown. Solid black lines
show the South African Exclusive Economic
Zone, solid red lines show the Prince

60°5 4

Edward Islands Marine Protected Area, and A
dashed black lines show average locations

of important oceanographic fronts (Orsi 50°5
et al. 1995). From north to south these

are the Subtropical Front, Subantarctic

Front, Antarctic Polar Front, Southern 60°S —

Antarctic Circumpolar Current Front and

the southern boundary of the Antarctic

Circumpolar Current. [Colour figure can be -
viewed at wileyonlinelibrary.com]

the extensive at-sea distribution of predators breeding at the islands.
Tracking locations covered nearly 40 million km?, with animals trav-
elling nearly 8,000 km from the islands; almost half of the location
estimates were outside of the South African EEZ. Cluster analysis of
the habitat preference model predictions shows different habitat use
among the species, which is unsurprising considering their taxonomic
diversity. However, habitat use did not necessarily follow taxonomic
similarities. Important areas were situated from subtropical waters
north of the Subtropical Front to Antarctic waters south of the Polar
Front (Figure 4). During winter, important areas were more broadly
distributed. Seabirds and seals are, in general, less constrained by de-
pendent offspring during this time and can search for prey more exten-
sively. More extensive search areas may also be required by seasonal
changes in the abundance and distribution of prey, including possible

prey depletion following more concentrated summer foraging.
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The Marine Protected Area in South Africa’s EEZ around the
Prince Edward Islands was designed during a systematic conserva-
tion planning study, with the aim of conserving biodiversity patterns
and processes around the islands, while minimizing constraints of an
existing fishery (Lombard et al., 2007). Kernel utilization distributions
for three species—southern elephant seals, wandering albatrosses and
grey-headed albatrosses—were among the data layers used to define
pelagic “flexible processes”. These data identified several of the import-
ant areas identified in the present study—including areas to the south-
west and north-west of the islands—but inadequately represented the
broader top predator community. Lombard et al. (2007) recommended
that new information, such as presented here, be used to reassess the
spatial plan. The authors also pointed to the importance of a man-
agement framework beyond the Prince Edward Islands EEZ, and our

results show that this is indeed necessary. The latter point was also
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highlighted in a study that used tracking data from 10 seabird species
at the Crozet, Kerguelen and Amsterdam islands to identify Important
Bird Areas using criteria set out by BirdLife International (Delord et al.,
2014). The authors identified 19 candidate Important Bird Areas in
the southern Indian and southern Atlantic Oceans, several of which
include important habitat identified in our study. An analysis of global
tracking data from 60 seabird species also identified a high concentra-
tion of IBAs in the southwest Indian Ocean, including many in the high
seas (Lascelles et al., 2016).

Tracking data for nine species of seabirds and marine mammals
has similarly been used to identify important habitat for top predators
around the Kerguelen Archipelago, ~2,300 km east southeast of the
Prince Edward Islands (Thiers et al., 2017). The authors of that study
developed habitat models for four of the nine species included, which
they considered representative of the top predator community at the
islands. Using these models, they predicted that the shallow Kerguelen/
Heard plateau and its shelf-break was important to the community
(Thiers et al., 2017), echoing the findings of an earlier effort to identify
areas of ecological significance based on tracking data for five species
from Kerguelen and Heard islands (Hindell et al., 2011). The Prince
Edward Islands, in contrast, have a small (~1,000 km2) shelf between
the two islands, limiting shelf and shelf-break habitats for predators.
Some species made use of distant shelf and shelf-break habitats off
South Africa (Indian yellow-nosed albatross and white-chinned pe-
trel), but high mean importance areas were generally pelagic. This
has two notable implications. Firstly, much of the important area is
in the high seas, beyond the jurisdiction of any nation, which pres-
ents a conservation and management challenge (Game et al., 2009).
Secondly, the processes and features associated with favourable pe-
lagic foraging habitat for meso- and apex predators are often dynamic
(Hazen et al., 2013). It is therefore important to explicitly link predator
distributions with environmental data to accurately predict the spatial
occurrence of such areas for any management actions (Game et al.,
2009; Hyrenbach, Forney, & Dayton, 2000). Our habitat models were
primarily predictive but the environmental covariates in the models
have mechanistic links with biological productivity and therefore the
distribution and abundance of prey. The relative importance of envi-
ronmental covariates in our habitat models offers some insight into
the factors that influence top predator distributions. However, it is
critical to note that our models allow interactions among covariates,
and that these interactions are themselves likely to be very important
(Dormann, 2007).

In species-specific models, sea surface temperature, primary pro-
ductivity and depth were often important predictors of habitat pref-
erence. In a tagging study of 23 top predator species in the Pacific
Ocean, Block et al. (2011) showed a positive relationship between SST
and predator abundance. Similarly, a global analysis of marine species
richness showed that SST was the best predictor of species richness
across diverse taxa (Tittensor, Mora, Jetz, & Lotze, 2010). In the same
study, however, primary productivity was a better predictor of spe-
cies richness in cetaceans and pinnipeds (Tittensor et al., 2010). In our
species-specific models, productivity was also of high importance. SST
and productivity are linked and are among the main factors influencing

ocean ecosystems (Garrison, 2009; Kaiser et al., 2005). While these
predictors may be decoupled in time and space, and from prey avail-
ability at higher trophic levels (e.g., Grémillet et al., 2008), we might
expect that they broadly indicate profitable foraging areas for marine
top predators (e.g., Block et al., 2011). Depth is also an important pre-
dictor in both species-specific and mean habitat importance models
and bottom slope was important in a winter mean habitat importance
model. Bathymetric characteristics have often been linked to predator
diversity (Bouchet, Meeuwig, Salgado Kent, Letessier, & Jenner, 2015;
Morato, Hoyle, Allain, & Nicol, 2010), as the seafloor has a fundamen-
tal influence on biophysical processes (Garrison, 2009; Kaiser et al.,
2005). For example, features like seamounts and shelf breaks can in-
teract with currents to increase vertical mixing and upwelling, which
increases productivity and in turn may attract higher order predators
(Bouchet et al., 2015; Morato et al., 2010).

SSTgrad, SSHA and SSHgrad are linked to ocean fronts and eddies,
which are considered important to a range of marine top predators
(Nel et al. 2001, Bost et al., 2009; Scales et al., 2014). While these had
moderate influence for some species (e.g., light-mantled albatross in
summer), only SSTgrad was an important predictor in the mean habitat
importance models, and the direction of this relationship was contrary
to expectation, with lower SSTgrad in high mean importance areas.
Eddy kinetic energy was a poor predictor even in species-specific
models. It may be that such associations will only be detected at finer
spatio-temporal scales, or if along-track behaviour of the animals is
modelled rather than using a case-control design.

In terms of mean habitat importance, SST was influential but
wind typically had a greater influence. Wind affects the depth of the
mixed layer (MLD), which in turn affects primary productivity and
chlorophyll-a concentration (Sallée, Speer, & Rintoul, 2010), but it is
interesting that these variables themselves (CHL, PROD, MLD) were
not of higher importance than wind for predicting mean importance
(although both PROD and CHL were generally more influential in
species-specific models). Our use of monthly climatologies (MLD and
CHL) and coarse resolution data (MLD) may have masked this relation-
ship, as well as the secondary nature of the mean habitat importance
model. Response curves for the environmental variables, particularly
SST and WINDU, illustrate the seasonal southward shift of important
areas, from the Subtropical and Subantarctic Zones in summer to a
more Polar Frontal Zone distribution in winter.

Given the diverse space use and foraging strategies of preda-
tors included in this study, it is possible that these factors identified
as most influential for mean habitat importance only correlate with
high mean importance areas, rather than being the mechanistic cause
thereof. This should have been alleviated somewhat using only the 4
or 8 highest species scores for each cell, which should select sets of
predators with similar responses to environmental conditions (as iden-
tified in the cluster analysis). However, different sets of predators will
be selected in each case which may preclude broad inference in this
study. The dataset we assembled may be used to further explore such
mechanistic links. However, our results show that there is unlikely to
be a simple relationship linking areas of high top predator overlap with
environmental predictors in this region.
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The results underscore the utility of predictive modelling for
management and conservation purposes. Along with other studies
around French and Australian islands in the Indian Ocean sector of the
Southern Ocean (Delord et al., 2014; Hindell et al., 2011; Patterson
et al., 2016; Thiers et al., 2017), we show the advantages of analys-
ing multi-species tracking data to identify important marine habitat
for top predators, but also illustrate diverse foraging areas and space
use patterns for Subantarctic top predators breeding at different

archipelagos.

4.1 | Limitations and future research

The study makes a significant contribution to our knowledge of ma-
rine top predator distribution in the Southern Ocean. However, some
caveats should be noted.

The tracking data available for the study are not representative of
all top predators breeding at the Prince Edward Islands. Although we
included a broad range of taxa with varied foraging strategies, smaller
seabirds are not represented due to the logistical challenges of track-
ing them. Inshore-feeding species—Gentoo penguins (Pygoscelis papua)
and Crozet shags (Phalacrocorax [atriceps] melanogenis)—were also not
included. However, the inter-island shelf and inshore areas typically
used by the latter species (e.g., Carpenter-Kling et al., 2017) represent
a very small number of grid cells in our study, and most of these cells
are already highlighted. Therefore, the inclusion of tracking data for
these species would be unlikely to significantly change our findings.

Not all life history stages of each species are represented in our
study: data are primarily from adult individuals, and breeding phases
are better represented. Although our analysis suggests that tracking
data are representative of the population of each species, these results
apply only to the life history stage during tracking. Moreover, repre-
sentativeness can only be estimated and, in our method, the repre-
sentativeness score was dependent on the nonlinear regression used.

We compared environmental covariates along observed tracks
to those along simulated tracks to estimate broad-scale habitat
preferences. Alternatively, we could calculate indices of foraging
behaviour (or “area-restricted search”) along each track and com-
pare characteristics of putative foraging locations with those of pu-
tative non-foraging locations (e.g., Reisinger, Keith, Andrews, & de
Bruyn, 2015). While this may reveal environmental features related
to foraging specifically, the selected indices of foraging behaviour
may show weak correspondence with actual foraging (e.g., Ramasco,
Barraquand, Biuw, McConnell, & Nilssen, 2015; Weimerskirch,
Pinaud, Pawlowski, & Bost, 2007) and a single index might not be ap-
propriate across species with different foraging modes. Furthermore,
this approach typically does not account for environments that were
available but not used by the animals, which may underestimate hab-
itat preference.

The data and results presented here form the basis of future efforts
to predict the consequences of environmental change (e.g., Hazen
et al., 2013), and it would be useful to identify species representative
of the distribution of the broader suite of marine predators. Explicitly
identifying specific priority areas requires choosing thresholds for
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habitat percentile and mean habitat importance values, and further
work is required in this regard. Further effort should also be directed
towards exploring alternative approaches for modelling the distribu-
tion and overlap of this set of marine top predators, including multivar-
iate models (e.g., Elith & Leathwick, 2007; Warton et al., 2015).
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