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Abstract
Aim: The distribution of marine predators is driven by the distribution and abundance 
of their prey; areas preferred by multiple marine predator species should therefore 
indicate areas of ecological significance. The Southern Ocean supports large popula-
tions of seabirds and marine mammals and is undergoing rapid environmental change. 
The management and conservation of these predators and their environment relies on 
understanding their distribution and its link with the biophysical environment, as the 
latter determines the distribution and abundance of prey. We addressed this issue 
using tracking data from 14 species of marine predators to identify important habitat.
Location: Indian Ocean sector of the Southern Ocean.
Methods: We used tracking data from 538 tag deployments made over a decade at 
the Subantarctic Prince Edward Islands. For each real track, we simulated a set of 
pseudo- tracks that allowed a presence- availability habitat modelling approach that es-
timates an animal’s habitat preference. Using model ensembles of boosted regression 
trees and random forests, we modelled these tracks as a response to a set of 17 envi-
ronmental variables. We combined the resulting species- specific models to evaluate 
areas of mean importance.
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1  | INTRODUCTION

The distribution and life history traits of marine predators are influ-
enced by the distribution and abundance of their prey, which are 
themselves affected by physical and biological factors. Therefore, ma-
rine top predators are touted as sentinels of marine ecosystems, which 
potentially integrate diverse and complex environmental signals (e.g., 
Boyd & Murray, 2001; Durant et al., 2009; Moore, 2008). Accordingly, 
areas with a high abundance or diversity of foraging top predators are 
regarded as representing ecologically important areas (Block, Costa, 
Boehlert, & Kochevar, 2003; Hazen et al., 2013). Predators may also 
have significant top- down effects on ecosystems (Baum & Worm, 
2009; Heithaus, Frid, Wirsing, & Worm, 2008). Quantitative infor-
mation on the spatial distribution of marine predator assemblages is 
therefore required to better understand and manage marine systems. 
This is particularly so given the increasing anthropogenic impacts on 
the oceans (Halpern et al., 2015; Maxwell et al., 2013). While the dis-
tributions of many marine predator species are becoming well- known, 
there is an increasing emphasis on considering species assemblages 
to identify important ecological areas and common drivers of distri-
bution and habitat use (e.g., Block et al., 2011; Patterson et al., 2016; 
Raymond et al., 2015; Thiers, Delord, Bost, Guinet, & Weimerskirch, 
2017).

The Southern Ocean is a vast area interspersed with very few ter-
restrial sites where seabirds and seals can breed. One such island group 
is the Prince Edward Islands, comprising Marion Island and Prince 
Edward Island. At least 29 seabird species and three seal species breed 
there—collectively numbering millions of individuals—making the 
Prince Edward Islands a globally significant site for seabirds and seals 
(Ryan & Bester, 2008). In 2013, South Africa declared a 180,633 km2 
marine protected area in the exclusive economic zone (EEZ) surround-
ing the islands, partly to protect this biodiversity (Lombard et al., 2007). 
A number of seabird species breeding at the islands have a threatened 
or near- threatened conservation status (Table S1). Wide- scale en-
vironmental changes in the southern Indian Ocean have influenced 

the population sizes of several seal and seabird species breeding at 
Subantarctic islands (Weimerskirch, Inchausti, Guinet, & Barbraud, 
2003). At the Prince Edward Islands, mean sea surface temperatures 
increased by 1.4°C from 1949 to 1998 (Mélice, Lutjeharms, Rouault, & 
Ansorge, 2003) and such changes, coupled with changes in prey abun-
dance and distribution, are thought to affect the abundance and life 
history parameters of several top predators breeding there (Crawford, 
Dyer, Upfold, & Makhado, 2014; Wege, Etienne, et al., 2016).

Seabirds and marine mammals at the Prince Edward Islands have 
been studied since the 1950s (Bester et al., 2011; Cooper & Brown, 
1990), with the first studies using tracking devices to investigate their 
at- sea distribution conducted in the early 1990s (Bester & Pansegrouw, 
1992). Despite decades of research, most studies have focussed on in-
dividual species and no study has considered the distribution of an as-
semblage of top predators from the Prince Edward Islands. Thus, there 
is a significant gap in our understanding of the common patterns and 
drivers of marine predator distribution, and therefore the ecologically 
significant areas, in this region.

In this study, we collate tracking data for 14 species, including 10 
seabirds, 3 seals and 1 cetacean from the Prince Edward Islands, to 
contribute to a broader understanding of the distribution and habitat 
use of marine top predators in the Southern Indian Ocean. Specifically, 
we build habitat preference models for each species, based on a set of 
environmental covariates, and predict areas of high habitat preference. 
We then combine these preference scores for all species to identify 
common areas of high preference. We focus on overlap and common-
ality at meso- scales (10 s–100 s of km), at which oceanographic and 
environmental features are likely to impact the foraging distribution of 
marine top predators.

2  | METHODS

The Prince Edward Islands (46.9°S, 37.7°E) are situated in the south-
west Indian Ocean sector of the Southern Ocean (Figure 1). The 

Results: Real tracking locations covered 39.75 million km2, up to 7,813 km from the 
Prince Edward Islands. Areas of high mean importance were located broadly from the 
Subtropical Zone to the Polar Frontal Zone in summer and from the Subantarctic to 
Antarctic Zones in winter. Areas of high mean importance were best predicted by fac-
tors including wind speed, sea surface temperature, depth and current speed.
Main conclusions: The models and predictions developed here identify important habi-
tat of marine predators around the Prince Edward Islands and can support the large- 
scale conservation and management of Subantarctic ecosystems and the marine 
predators they sustain. The results also form the basis of future efforts to predict the 
consequences of environmental change.

K E Y W O R D S

areas of ecological significance, distribution, distribution models, hotspots, marine mammals, 
marine protected areas, seabirds
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islands are the summit of a volcano which rises ~5,000 m from the 
surrounding seafloor. Oceanographically, the region is dominated by 
the east- flowing Antarctic Circumpolar Current and three associated 
fronts: the Subtropical, Subantarctic and Antarctic Polar Fronts (from 
north- south) (Lutjeharms & Ansorge, 2008).

We collated published and unpublished tracking data for 14 preda-
tor species tracked from the Prince Edward Islands from 2003 to 2014 
(Table 1; additional details in Table S1). Animals were tracked using a 
variety of satellite- linked (Argos) and global positioning system (GPS) 
tags. Details of animal capture and restraint, tags used, tag attachment 
methods, ethics approval and permitting are contained in the refer-
ences cited in Table 1. After removing tracks with fewer than 30 at- sea 
locations and those flagged based on visual inspection, the dataset 
contained 538 individual tracks. Complete as well as incomplete tracks 
were retained.

All analyses were conducted in the R environment (R Core Team, 
2017). First, we pre- processed tracks using the “argosfilter” package 
(Freitas, 2012) to remove position estimates that created location 
spikes (turning angles <15 and 25 degrees in conjunction with dis-
placements >2.5 and 5 km, respectively) and high movement speeds 
(Freitas, Lydersen, Ims, Fedak, & Kovacs, 2008). We estimated ani-
mal locations at regular time intervals by fitting a continuous- time 
correlated random walk model (Johnson, London, Lea, & Durban, 
2008) to each track using the “crawl” 1.5 package (Johnson, 2015). 
This model accounts for errors around Argos location estimates, but 
we also fit the model to GPS tracks, assuming the same accuracy 
as the highest Argos location quality class. The time interval cho-
sen was the whole number nearest the median time interval in the 
unprocessed tracking data for the given species and tag type (Table 
S1). While the tracks therefore had different inherent accuracies, 
these differences are negligible with respect to the spatial scale 
of variation of the environmental data and the scale of the study. 
The tracking data were classified into “summer” tracks and “winter” 

tracks. The dates defining these two putative seasons for each spe-
cies were the two minima of tracking effort in approximately April 
and October (Figure S1). Where a track comprised dates in both 
seasons, we assigned the whole track to the season with the larger 
proportion of locations.

We assessed the representativeness of the tracking data for each 
species in each season by drawing curves of the cumulative number of 
grid cells visited against the number of individuals tracked. The order 
in which individuals were sampled was randomly shuffled to generate 
1000 curves in each case. The mean of these curves was then mod-
elled as a nonlinear asymptotic regression, and the cumulative number 
of cells visited as a percentage of the estimated number of cells at 
the asymptote was used as a measure of the representativeness (cf. 
Hindell, Bradshaw, Sumner, Michael, & Burton, 2003; Lascelles et al., 
2016).

To characterize the environment potentially available to individ-
uals, and thus allowing a case–control design for habitat preference 
modelling (Aarts, MacKenzie, McConnell, Fedak, & Matthiopoulos, 
2008), we simulated random or pseudo- tracks. For each real track, we 
simulated 20 pseudo- tracks by fitting a first- order vector autoregres-
sive model characterized by the step lengths and turning character-
istics of the real track—estimated from the random walk model—as 
detailed in Raymond et al. (2015). This maintains characteristics of the 
real tracks relevant for estimating the space available to an individual 
if it had no habitat preferences. This also means that characteristics 
of the tracking data due to the tag type (e.g., sampling frequency) are 
reflected in both the real and pseudo tracks for each individual ani-
mal, thereby minimizing any biases in the final results due to differ-
ent tag types used on different species. The number of pseudo- tracks 
was chosen, as in Raymond et al. (2015), as a compromise between 
adequately characterizing the available environment and limiting the 
dataset size for computation. Pseudo- locations falling on land were 
rejected and re- sampled.

F IGURE  1 Location estimates for 538 tracking deployments on 14 species of marine predators at the Prince Edward Islands (filled black 
point), used to model important habitat around the islands. Utilization distributions for each species are shown in Figure 2. AFS, Antarctic fur 
seal; DMS, sooty albatross; GHA, grey- headed albatross; IYA, Indian yellow- nosed albatross; KIN, king penguin; LMS, light- mantled albatross; 
MAC, macaroni penguin; NGP, northern giant petrel; ORC, killer whale; SES, southern elephant seal; SFS, Subantarctic fur seal; SRP, rockhopper 
penguin; WAB, wandering albatross; WCP, white- chinned petrel. [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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At each real and pseudo- location, we extracted a set of 17 en-
vironmental covariates—mainly remotely- sensed by satellites—using 
the “raadtools” (Sumner, 2016) and “raster” (Hijmans, 2016) packages 
(Table 2; additional details in Table S2). For dynamic environmental 
covariates, we matched the date and time of the location to the near-
est environmental data in space and time. We chose widely available 
environmental covariates which are commonly used to model the 
habitat of marine predators (Table S2). They are assumed to represent 
bio- physical factors influencing predators and/or their prey directly or 
indirectly; however, some covariates may be proxies for unknown or 
unmeasured environmental factors.

We assessed habitat preference by modelling the relationship 
between the space use of animals and environmental covariates. We 
adopted the aforementioned case–control design (Aarts et al., 2008), 
where location estimates from a real track were treated as presences 
(1) and the pseudo- locations from the 20 simulated tracks were treated 
as habitat potentially available to an individual (0). Classification mod-
els were used to discriminate these two sets of points based on their 
environmental covariates (Table 2).

These habitat preference models do not explicitly account for hab-
itat accessibility—an important constraint for central place foragers 
(such as breeding seabirds and female fur seals provisioning pups). We 
therefore constructed separate accessibility models for each species 
for prediction purposes. Here, the response was whether a given cell 
contained any real or pseudo- locations (1) (i.e., it was potentially ac-
cessible) or did not contain any location estimates (0); the sole pre-
dictor variable was distance from colony, as we assumed accessibility 
to be a function of distance. Predictions from the habitat preference 
models were then weighted by the predictions from the accessibility 
models, yielding a prediction surface of preference, given availability. 
The habitat preference predictions are not absolute estimates of the 
probability that a habitat is preferred and are not directly comparable 
between different species (e.g., Beyer et al., 2010). To enable compari-
sons between species, we therefore transformed each prediction map 
by percentile to give a habitat importance (hereafter percentile habi-
tat) score (Raymond et al., 2015).

Habitat preference scores were calculated from ensemble models 
(combination or set of models) which combined boosted regression 
trees (Friedman, 2001) and random forests (Breiman, 2001). These 
constituent models were fitted through the “caret” (Kuhn, 2016) pack-
age (Table S3). Models were tuned by compiling sets of candidate 
models with different parameter combinations and then comparing 
the average area under the receiver operating characteristic curve 
(AUC) scores—calculated from 10- fold cross- validation—of these 
candidate models (Tables S3 and S4). Cross- validation folds were cre-
ated by randomly dividing individuals into 10 groups containing an 
approximately equal number of individuals. The real and simulated 
tracks from any one individual were always kept together in the same 
fold. AUC scores calculated from random cross- validation are usually 
overoptimistic due to spatial autocorrelation (Hijmans, 2012), but our 
cross- validation scheme should result in AUC scores which reflect the 
generalized model performance more accurately. Indeed, AUC scores 
calculated using this cross- validation scheme were on average 0.19 
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lower	 (range	=	−0.31	 to	 −0.08)	 than	 those	 calculated	 using	 random	
stratified cross- validation during preliminary model runs. We then 
created ensembles (or combinations) of these models by “stacking” 
them using the “caretEnsemble” package (Deane- Mayer & Knowles, 
2016). The weight of each model in the ensemble (or “stack”) is its 
coefficient in a logistic regression of the model predictions (probability 
of being a real location estimate) against the original outcome (real 
or pseudo- location estimate) (Zhou, 2012). Model performance in all 
cases was evaluated using AUC scores. To generate prediction maps, 
we calculated the mean of each environmental covariate for the study 
period (summer and winter separately) based on input data at the 
same spatio- temporal resolution as that used to model habitat pref-
erence. We used ordinary Kriging to interpolate any missing values. 
Values of these variables were then sampled on a new 0.1° × 0.1° grid 
which was used for prediction. By predicting to the mean environmen-
tal conditions over the study period while matching the locations used 
in the models to the spatio- temporally nearest environmental covari-
ates, the interannual variation typical of this dynamic marine system 
should be accounted for to some extent. However, this assumes that 
the correlation between animal behaviour and environmental covari-
ates holds across years, and interannual variation will likely still have 
some unquantified influence on our output.

To evaluate which species showed similar habitat preferences, we 
used affinity propagation clustering (Frey & Dueck, 2007) to iden-
tify the number and composition of clusters (“apcluster” package; 
Bodenhofer, Kothmeier, & Hochreiter, 2011). For visualization, we cal-
culated kernel utilization distributions (Worton, 1989) for each species 
(“adehabitatHR” package; Calenge, 2006), with h- values selected using 
the ad hoc method (Silverman, 1986). Finally, we calculated mean hab-
itat importance; first, as the mean of all percentile habitat scores in 
each cell. However, because the diverse suite of species in this study 
can be expected to use the environment in different ways, we also 
calculated mean habitat importance scores using the top 8 percentile 
habitat scores for each cell and using only the top four scores—a more 
lenient overlap measure (cf. Raymond et al., 2015).

For mapping and further modelling, we used only cells with mean 
habitat importance in the 95th percentile. To identify the environmen-
tal variables associated with these areas of high mean importance, 
we also modelled the relationship between mean importance scores 
and the set of environmental covariates using a model ensemble (as 
above). In this case, models were regression rather than classification 
models, as the response values are continuous, and models were eval-
uated using root mean square error (RMSE) and the coefficient of de-
termination (R2).

3  | RESULTS

We analysed 538 tracks from 14 species, which yielded 244,276 
at- sea location estimates, covering an area of 39.75 million km2. 
Location estimates were up to 7,813 km from the deployment loca-
tion (Figure 1). More than half the location estimates (126,835; 52%) 
were in the EEZ around the Prince Edward Islands, but most location 

estimates (152,265; 62%) were outside the Prince Edward Islands 
marine protected area. Few locations were in the EEZ around main-
land South Africa (3,181 locations; 1.3%). The estimated represent-
ativeness of the tracking data for each species ranged from 32.7% 
(killer whales) to 96.5% (Subantarctic fur seals) during summer and 
from 45.0% (killer whales) to 97.4% (Subantarctic fur seals) during 
winter (Table S5).

Many species showed strong directional tendency in their move-
ment, as well as having marked differences between summer and 
winter distributions (Figure 2). Based on the kernel utilization distri-
butions, species fell into several groups with similar patterns of space 
use. In summer, these were species with (1) core areas south of the is-
lands (Antarctic fur seal, macaroni penguin and rockhopper penguin), 
(2) around the islands and to the north (wandering albatross, sooty al-
batross, killer whale, Subantarctic fur seal and grey- headed albatross), 
(3) north of the islands, particularly near South Africa (white- chinned 
petrel and Indian yellow- nosed albatross), and (4) to the south- west 
of the islands (southern elephant seal and light- mantled albatross) 
(Figure 2). In winter, four core use areas were identified: (1) to the 
southwest of the islands (macaroni penguin, Antarctic fur seal, rock-
hopper penguin, king penguin and southern elephant seal), (2) around 
the islands (Subantarctic fur seal, northern giant petrel and killer 
whale), (3) broadly distributed (light- mantled albatross and sooty 
albatross), and (4) near South Africa (Indian yellow- nosed albatross) 
(Figure 2). Overlap was generally lower in winter than in summer.

Model performance (AUC) ranged from 0.54 to 0.85. Boosted re-
gression trees generally had the highest AUC scores, but scores were 
nearly always within one standard deviation of each other (Figure S2). 
The predictions of models used in the ensemble generally showed 
strong correlation (mean = 0.83, range = 0.44–0.99).

The predictor variables differed in their importance rank across 
species and seasons, but during summer the variables sea surface 
temperature (SST), distance to the ice edge (DISTICE), depth (DEP) 
and primary productivity (PROD) (ranked by mean variable relative 
importance across species) were often the most important predic-
tors of habitat preference (Figure S3). These four predictors had 
combined importance of 28.2–84.2 (mean = 43.1) across the spe-
cies. During winter, the same four variables were generally most 
important, but ranked DISTICE, DEP, PROD, SST. Their combined 
importance across species was 28.7–58.0 (mean = 38.2) (Figure S3).

Cluster analysis of the percentile habitat scores indicated four spe-
cies clusters in summer and in winter. Nine species comprised a single 
large cluster in summer and five species a single cluster in winter. In 
summer, light- mantled sooty albatross, macaroni penguins and white- 
chinned petrels each formed their own independent clusters, while in 
winter killer whales, sooty albatross and Indian yellow- nosed albatross 
each formed an independent cluster (Figure S4). The hierarchical clus-
tering did not match taxonomic relationships among the species.

Prediction maps for each species are shown in Figure 3. In this fig-
ure, we mapped predictions only above an arbitrarily chosen thresh-
old of 95, but generally, cells with predicted habitat importance in the 
99th percentile showed good agreement with kernel utilization distri-
butions. In summer, cells with the highest mean habitat importance 
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generally ranged from the approximate location of the Antarctic Polar 
Front to north of the approximate location of the Subtropical Front 
(Figure 4). Mean habitat importance for all species indicated the high-
est value areas around the Subantarctic Front. In contrast to the mean 
importance calculated for four and eight species, the mean importance 
for all species did not identify as many important cells in proximity 
to the Prince Edward Islands (Figure 4). In winter, the highest mean 
importance areas (four and eight species) included cells slightly further 
south than in summer and areas south and south- west of the islands 
in the Polar Frontal Zone were important (Figure 4). Mean importance 
for all species highlighted some far- lying areas, including small patches 
nearer the Antarctic continent. Waters surrounding the Crozet Islands 
to the east of the Prince Edward Islands were included among import-
ant areas. Cells with high mean habitat importance for all species were 

generally more patchily distributed than cells with high mean impor-
tance for four and eight species (Figure 4).

Areas with the highest mean habitat importance were often situ-
ated outside the Prince Edward Islands EEZ (Figures 4 and S5). Within 
the EEZ, the proportion of important grid cells inside versus outside 
the marine protected area was relatively even across mean habitat im-
portance values (Figure S5) and the marine protected area often en-
compassed cells with very high mean habitat importance (Figure S6). 
Virtually all cells in the EEZ around the Prince Edward Islands met the 
95th percentile threshold (see methods), and therefore, the proportion 
of important cells in the marine protected area matched the propor-
tion of the EEZ represented by the marine protected area (~34%).

Ensemble models of mean habitat importance indicated that 
wind (WINDV and WINDU), SST, DEP, SST gradient (SSTgrad) and 

F IGURE  2 Kernel utilization 
distributions of 14 predator species 
tracked from the Prince Edward Islands 
during summer (green) and winter (purple). 
Lower utilization distribution values, 
typically below 50%, indicate the core 
areas. Grey lines indicate positions of 
major fronts after Orsi et al. (1995); from 
north to south: the Subtropical Front, 
Subantarctic Front, Antarctic Polar Front, 
Southern Antarctic Circumpolar Front and 
the southern boundary of the Antarctic 
Circumpolar Current. AFS, Antarctic fur 
seal; DMS, sooty albatross; GHA, grey- 
headed albatross; IYA, Indian yellow- 
nosed albatross; KIN, king penguin; LMS, 
light- mantled albatross; MAC, macaroni 
penguin; NGP, northern giant petrel; ORC, 
killer whale; SES, southern elephant seal; 
SFS, Subantarctic fur seal; SRP, rockhopper 
penguin; WAB, wandering albatross; WCP, 
white- chinned petrel. [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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meridional current (CURRV) were generally important environmen-
tal predictors during summer and winter (Figure S7). Partial plots 
of the predictions (Figure S8) show similar relationships between 

mean importance and environmental variables across seasons 
and models. During summer, areas of high mean importance are 
characterized by high SST, negative WINDV (i.e., northerly wind), 

F IGURE  3 Habitat preference predictions of ensemble models for 14 predator species tracked from the Prince Edward Islands during (a) summer 
and (b) winter. Predictions have been percentile- transformed to yield a habitat importance score which is comparable among species, and only cells 
with values >95 are shown (representing 5% of the most important cells in the study area). Grey lines show the positions of oceanographic fronts, as 
in Figure 2. AFS, Antarctic fur seal; DMS, sooty albatross; GHA, grey- headed albatross; IYA, Indian yellow- nosed albatross; KIN, king penguin; LMS, 
light- mantled albatross; MAC, macaroni penguin; NGP, northern giant petrel; ORC, killer whale; SES, southern elephant seal; SFS, Subantarctic fur 
seal; SRP, rockhopper penguin; WAB, wandering albatross; WCP, white- chinned petrel. [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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positive WINDU (i.e., westerly wind), shallower DEP and lower 
SSTgrad. These relationships were similar during winter; however, 
SST of important areas showed a lower peak, mean habitat impor-
tance was high in very shallow and very deep areas, and distance 
to sea ice (DISTICE) of ~1,000 km was related to important areas 
(Figure S8).

4  | DISCUSSION

Using tracking data from 14 species and an ensemble modelling ap-
proach, this is the first study that quantitatively describes important 
habitats for an assemblage of marine top predators around the Prince 
Edward Islands in the Southern Indian Ocean. The study illustrates 

F IGURE  3  (Continued)



     |  545REISINGER Et al.

the extensive at- sea distribution of predators breeding at the islands. 
Tracking locations covered nearly 40 million km2, with animals trav-
elling nearly 8,000 km from the islands; almost half of the location 
estimates were outside of the South African EEZ. Cluster analysis of 
the habitat preference model predictions shows different habitat use 
among the species, which is unsurprising considering their taxonomic 
diversity. However, habitat use did not necessarily follow taxonomic 
similarities. Important areas were situated from subtropical waters 
north of the Subtropical Front to Antarctic waters south of the Polar 
Front (Figure 4). During winter, important areas were more broadly 
distributed. Seabirds and seals are, in general, less constrained by de-
pendent offspring during this time and can search for prey more exten-
sively. More extensive search areas may also be required by seasonal 
changes in the abundance and distribution of prey, including possible 
prey depletion following more concentrated summer foraging.

The Marine Protected Area in South Africa’s EEZ around the 
Prince Edward Islands was designed during a systematic conserva-
tion planning study, with the aim of conserving biodiversity patterns 
and processes around the islands, while minimizing constraints of an 
existing fishery (Lombard et al., 2007). Kernel utilization distributions 
for three species—southern elephant seals, wandering albatrosses and 
grey- headed albatrosses—were among the data layers used to define 
pelagic “flexible processes”. These data identified several of the import-
ant areas identified in the present study—including areas to the south- 
west and north- west of the islands—but inadequately represented the 
broader top predator community. Lombard et al. (2007) recommended 
that new information, such as presented here, be used to reassess the 
spatial plan. The authors also pointed to the importance of a man-
agement framework beyond the Prince Edward Islands EEZ, and our 
results show that this is indeed necessary. The latter point was also 

F IGURE  4 Maps showing mean habitat 
importance scores for top predators 
tracked from the Prince Edward Islands 
during summer (left panels) and winter 
(right panels). Habitat importance was 
calculated as the mean of the four highest 
scores in each cell (upper panels), eight 
highest scores in each cell (middle panels) 
and of all scores in each cell (bottom 
panels). Only cells with scores in the 95th 
percentile are shown. Solid black lines 
show the South African Exclusive Economic 
Zone, solid red lines show the Prince 
Edward Islands Marine Protected Area, and 
dashed black lines show average locations 
of important oceanographic fronts (Orsi 
et al. 1995). From north to south these 
are the Subtropical Front, Subantarctic 
Front, Antarctic Polar Front, Southern 
Antarctic Circumpolar Current Front and 
the southern boundary of the Antarctic 
Circumpolar Current. [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com


546  |     REISINGER Et al.

highlighted in a study that used tracking data from 10 seabird species 
at the Crozet, Kerguelen and Amsterdam islands to identify Important 
Bird Areas using criteria set out by BirdLife International (Delord et al., 
2014). The authors identified 19 candidate Important Bird Areas in 
the southern Indian and southern Atlantic Oceans, several of which 
include important habitat identified in our study. An analysis of global 
tracking data from 60 seabird species also identified a high concentra-
tion of IBAs in the southwest Indian Ocean, including many in the high 
seas (Lascelles et al., 2016).

Tracking data for nine species of seabirds and marine mammals 
has similarly been used to identify important habitat for top predators 
around the Kerguelen Archipelago, ~2,300 km east southeast of the 
Prince Edward Islands (Thiers et al., 2017). The authors of that study 
developed habitat models for four of the nine species included, which 
they considered representative of the top predator community at the 
islands. Using these models, they predicted that the shallow Kerguelen/
Heard plateau and its shelf- break was important to the community 
(Thiers et al., 2017), echoing the findings of an earlier effort to identify 
areas of ecological significance based on tracking data for five species 
from Kerguelen and Heard islands (Hindell et al., 2011). The Prince 
Edward Islands, in contrast, have a small (~1,000 km2) shelf between 
the two islands, limiting shelf and shelf- break habitats for predators. 
Some species made use of distant shelf and shelf- break habitats off 
South Africa (Indian yellow- nosed albatross and white- chinned pe-
trel), but high mean importance areas were generally pelagic. This 
has two notable implications. Firstly, much of the important area is 
in the high seas, beyond the jurisdiction of any nation, which pres-
ents a conservation and management challenge (Game et al., 2009). 
Secondly, the processes and features associated with favourable pe-
lagic foraging habitat for meso-  and apex predators are often dynamic 
(Hazen et al., 2013). It is therefore important to explicitly link predator 
distributions with environmental data to accurately predict the spatial 
occurrence of such areas for any management actions (Game et al., 
2009; Hyrenbach, Forney, & Dayton, 2000). Our habitat models were 
primarily predictive but the environmental covariates in the models 
have mechanistic links with biological productivity and therefore the 
distribution and abundance of prey. The relative importance of envi-
ronmental covariates in our habitat models offers some insight into 
the factors that influence top predator distributions. However, it is 
critical to note that our models allow interactions among covariates, 
and that these interactions are themselves likely to be very important 
(Dormann, 2007).

In species- specific models, sea surface temperature, primary pro-
ductivity and depth were often important predictors of habitat pref-
erence. In a tagging study of 23 top predator species in the Pacific 
Ocean, Block et al. (2011) showed a positive relationship between SST 
and predator abundance. Similarly, a global analysis of marine species 
richness showed that SST was the best predictor of species richness 
across diverse taxa (Tittensor, Mora, Jetz, & Lotze, 2010). In the same 
study, however, primary productivity was a better predictor of spe-
cies richness in cetaceans and pinnipeds (Tittensor et al., 2010). In our 
species- specific models, productivity was also of high importance. SST 
and productivity are linked and are among the main factors influencing 

ocean ecosystems (Garrison, 2009; Kaiser et al., 2005). While these 
predictors may be decoupled in time and space, and from prey avail-
ability at higher trophic levels (e.g., Grémillet et al., 2008), we might 
expect that they broadly indicate profitable foraging areas for marine 
top predators (e.g., Block et al., 2011). Depth is also an important pre-
dictor in both species- specific and mean habitat importance models 
and bottom slope was important in a winter mean habitat importance 
model. Bathymetric characteristics have often been linked to predator 
diversity (Bouchet, Meeuwig, Salgado Kent, Letessier, & Jenner, 2015; 
Morato, Hoyle, Allain, & Nicol, 2010), as the seafloor has a fundamen-
tal influence on biophysical processes (Garrison, 2009; Kaiser et al., 
2005). For example, features like seamounts and shelf breaks can in-
teract with currents to increase vertical mixing and upwelling, which 
increases productivity and in turn may attract higher order predators 
(Bouchet et al., 2015; Morato et al., 2010).

SSTgrad, SSHA and SSHgrad are linked to ocean fronts and eddies, 
which are considered important to a range of marine top predators 
(Nel et al. 2001, Bost et al., 2009; Scales et al., 2014). While these had 
moderate influence for some species (e.g., light- mantled albatross in 
summer), only SSTgrad was an important predictor in the mean habitat 
importance models, and the direction of this relationship was contrary 
to expectation, with lower SSTgrad in high mean importance areas. 
Eddy kinetic energy was a poor predictor even in species- specific 
models. It may be that such associations will only be detected at finer 
spatio- temporal scales, or if along- track behaviour of the animals is 
modelled rather than using a case–control design.

In terms of mean habitat importance, SST was influential but 
wind typically had a greater influence. Wind affects the depth of the 
mixed layer (MLD), which in turn affects primary productivity and 
chlorophyll-a concentration (Sallée, Speer, & Rintoul, 2010), but it is 
interesting that these variables themselves (CHL, PROD, MLD) were 
not of higher importance than wind for predicting mean importance 
(although both PROD and CHL were generally more influential in 
species- specific models). Our use of monthly climatologies (MLD and 
CHL) and coarse resolution data (MLD) may have masked this relation-
ship, as well as the secondary nature of the mean habitat importance 
model. Response curves for the environmental variables, particularly 
SST and WINDU, illustrate the seasonal southward shift of important 
areas, from the Subtropical and Subantarctic Zones in summer to a 
more Polar Frontal Zone distribution in winter.

Given the diverse space use and foraging strategies of preda-
tors included in this study, it is possible that these factors identified 
as most influential for mean habitat importance only correlate with 
high mean importance areas, rather than being the mechanistic cause 
thereof. This should have been alleviated somewhat using only the 4 
or 8 highest species scores for each cell, which should select sets of 
predators with similar responses to environmental conditions (as iden-
tified in the cluster analysis). However, different sets of predators will 
be selected in each case which may preclude broad inference in this 
study. The dataset we assembled may be used to further explore such 
mechanistic links. However, our results show that there is unlikely to 
be a simple relationship linking areas of high top predator overlap with 
environmental predictors in this region.
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The results underscore the utility of predictive modelling for 
management and conservation purposes. Along with other studies 
around French and Australian islands in the Indian Ocean sector of the 
Southern Ocean (Delord et al., 2014; Hindell et al., 2011; Patterson 
et al., 2016; Thiers et al., 2017), we show the advantages of analys-
ing multi- species tracking data to identify important marine habitat 
for top predators, but also illustrate diverse foraging areas and space 
use patterns for Subantarctic top predators breeding at different 
archipelagos.

4.1 | Limitations and future research

The study makes a significant contribution to our knowledge of ma-
rine top predator distribution in the Southern Ocean. However, some 
caveats should be noted.

The tracking data available for the study are not representative of 
all top predators breeding at the Prince Edward Islands. Although we 
included a broad range of taxa with varied foraging strategies, smaller 
seabirds are not represented due to the logistical challenges of track-
ing them. Inshore- feeding species—Gentoo penguins (Pygoscelis papua) 
and Crozet shags (Phalacrocorax [atriceps] melanogenis)—were also not 
included. However, the inter- island shelf and inshore areas typically 
used by the latter species (e.g., Carpenter- Kling et al., 2017) represent 
a very small number of grid cells in our study, and most of these cells 
are already highlighted. Therefore, the inclusion of tracking data for 
these species would be unlikely to significantly change our findings.

Not all life history stages of each species are represented in our 
study: data are primarily from adult individuals, and breeding phases 
are better represented. Although our analysis suggests that tracking 
data are representative of the population of each species, these results 
apply only to the life history stage during tracking. Moreover, repre-
sentativeness can only be estimated and, in our method, the repre-
sentativeness score was dependent on the nonlinear regression used.

We compared environmental covariates along observed tracks 
to those along simulated tracks to estimate broad- scale habitat 
preferences. Alternatively, we could calculate indices of foraging 
behaviour (or “area- restricted search”) along each track and com-
pare characteristics of putative foraging locations with those of pu-
tative non- foraging locations (e.g., Reisinger, Keith, Andrews, & de 
Bruyn, 2015). While this may reveal environmental features related 
to foraging specifically, the selected indices of foraging behaviour 
may show weak correspondence with actual foraging (e.g., Ramasco, 
Barraquand, Biuw, McConnell, & Nilssen, 2015; Weimerskirch, 
Pinaud, Pawlowski, & Bost, 2007) and a single index might not be ap-
propriate across species with different foraging modes. Furthermore, 
this approach typically does not account for environments that were 
available but not used by the animals, which may underestimate hab-
itat preference.

The data and results presented here form the basis of future efforts 
to predict the consequences of environmental change (e.g., Hazen 
et al., 2013), and it would be useful to identify species representative 
of the distribution of the broader suite of marine predators. Explicitly 
identifying specific priority areas requires choosing thresholds for 

habitat percentile and mean habitat importance values, and further 
work is required in this regard. Further effort should also be directed 
towards exploring alternative approaches for modelling the distribu-
tion and overlap of this set of marine top predators, including multivar-
iate models (e.g., Elith & Leathwick, 2007; Warton et al., 2015).
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