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Abstract

Marine predators, such as seabirds, are useful indicators of marine ecosystem functioning.

In particular, seabird diet may reflect variability in food-web composition due to natural or

human-induced environmental change. Diet monitoring programmes, which sample diet

non-invasively, are valuable aids to conservation and management decision-making. We

investigated the diet of an increasing population of greater crested terns Thalasseus bergii

in the Western Cape, South Africa, during three successive breeding seasons (2013 to

2015), when populations of other seabirds feeding on small pelagic schooling fish in the

region were decreasing. Breeding greater crested terns carry prey in their bills, so we used

an intensive photo-sampling method to record their diet with little disturbance. We identified

24,607 prey items from at least 47 different families, with 34 new prey species recorded.

Fish dominated the diet, constituting 94% of prey by number, followed by cephalopods

(3%), crustaceans (2%) and insects (1%). The terns mainly targeted surface-schooling Clu-

peiformes, with anchovy Engraulis encrasicolus the most abundant prey in all three breed-

ing seasons (65% overall). Prey composition differed significantly between breeding stages

and years, with anchovy most abundant at the start of the breeding season, becoming less

frequent as the season progressed. The proportion of anchovy in the diet also was influ-

enced by environmental factors; anchovy occurred more frequently with increasing wind

speeds and was scarce on foggy days, presumably because terns rely in part on social facil-

itation to locate anchovy schools. The application of this intensive and non-invasive photo-

sampling method revealed an important degree of foraging plasticity for this seabird within a

context of locally reduced food availability, suggesting that, unlike species that specialise on

a few high-quality prey, opportunistic seabirds may be better able to cope with reductions in

the abundance of their preferred prey.
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Received: September 6, 2017

Accepted: December 14, 2017

Published: January 31, 2018

Copyright: © 2018 Gaglio et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data have

been uploaded to figshare and can be accessed

using the following DOI: 10.6084/m9.figshare.

5731413.

Funding: This work was supported by a

Department of Science and Technology-Centre of

Excellence grant to the FitzPatrick Institute of

African Ornithology. RBS was supported by a

fellowship from the Leiden Conservation

Foundation.

https://doi.org/10.1371/journal.pone.0190444
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190444&domain=pdf&date_stamp=2018-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190444&domain=pdf&date_stamp=2018-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190444&domain=pdf&date_stamp=2018-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190444&domain=pdf&date_stamp=2018-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190444&domain=pdf&date_stamp=2018-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190444&domain=pdf&date_stamp=2018-01-31
https://doi.org/10.1371/journal.pone.0190444
https://doi.org/10.1371/journal.pone.0190444
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.5731413
https://doi.org/10.6084/m9.figshare.5731413


Introduction

Upper trophic-level predators can be used as indicators of marine food supplies as changes in

their life history traits, such as their diet, often reflect variations in the environment (e.g., [1]).

Large, high-quality diet data-sets provide a basis to examine short- and long-term environ-

mental changes, providing a better understanding of ecosystem functioning, and giving the

potential to support ecosystem-based management [2, 3]. In highly dynamic and often unpre-

dictable marine ecosystems such as upwelling systems, top predators like seabirds must adjust

their diet and foraging ecology in response to seasonal and inter-annual changes in food avail-

ability. Thus, seabird diet may reflect variability in food-web composition due to natural or

human-induced environmental change [4, 5].

Although seabirds have evolved several life-history characteristics to help buffer scarce and/

or unpredictable forage resources, they may still be affected negatively by reductions in food

availability (e.g., [6]). Such negative impacts are particularly evident during breeding, when

prey availability and localized environmental factors affect seabirds because of range restric-

tions imposed by central-place foraging [7]. Variation in food supplies around breeding colo-

nies can have strong impacts on species that carry only one prey at a time (single-prey loaders)

with short foraging ranges, such as terns [8, 9]. Some specialist species target a few high-quality

prey species [10], making them vulnerable to stochastic availability of their preferred prey and

other abiotic constraints [9, 11]. Other species are more versatile, enabling them to buffer

changes resulting from climate change and/or human exploitation in the availability of their

favoured prey species by switching to other, more readily available, but often lower quality

food [12–14]. Such opportunistic feeding can be sufficient to maintain adult condition and

survival, but is not optimal for the growth and survival of chicks [15, 16].

The greater crested tern Thalasseus bergii is a coastal seabird with an extensive breeding

range that includes the Benguela Upwelling Region. It is an inshore forager that mainly

acquires food by diving to< 1 m below the sea surface [17]. When breeding, adults predomi-

nantly return to their nests with single prey items carried in their bills [18]. Research on Aus-

tralian populations suggests that higher quality prey is more important for chick provisioning

than for adult maintenance [19]. In southern Africa, little is known about the greater crested

tern’s foraging ecology; both studies of the species’ diet (based on chick regurgitations and

direct observations of chick provisioning) found a predominance of schooling Clupeiformes

fish [20, 21]. These pelagic fish species, mostly anchovy Engraulis encrasicolus and sardine Sar-
dinops sagax, are a major food source for three seabird species endemic to the Benguela region,

African penguins Spheniscus demersus, Cape cormorants Phalacrocorax capensis and Cape

gannetsMorus capensis. Both sardine and anchovy are also targeted by a large, industrial

purse-seine fishery [22]. Populations of these three endemic seabird species have decreased

since the 1980s, largely due to reductions in pelagic fish availability [6, 23], resulting in all

three being listed as globally threatened with extinction [24]. Competition with fisheries and

environmental changes have caused a spatial mismatch between pelagic fish distributions and

seabird breeding colonies [23, 25–29]. In contrast to recent population trajectories of these

Benguela endemics, the greater crested tern population has increased over the last two decades

[23, 30], a period for which there is no published information on this species’ diet. We report

the species’ prey composition over three breeding seasons (2013–2015) to assess how the forag-

ing ecology of greater crested terns in the Benguela region has been influenced by recent habi-

tat conditions associated with regional shifts in pelagic fish availability. By using a novel

photo-sampling technique we were able to collect large sample sizes in a non-invasive manner

[31], which allowed us to assess how greater crested tern diet varied with breeding stage, sea-

son and localized environmental factors.

A non-invasive study of the diet of a seabird breeding in the Benguela region
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Methods

Research was conducted on Robben Island (33˚48’S, 18˚22’E), off the south-west coast of

South Africa, where ca 90% of the South African population of greater crested tern breeds [23,

32]. During this study (2013–2015), two colonies of different sizes were established in 2013

and 2014, whereas in 2015 only one large colony was established. The two colonies were

located in the same areas each year in 2013–2014, with the ‘single-species’ colony comprising

about 7,500 and 8,000 pairs in 2013 and 2014, respectively. The other colony included Har-

tlaub’s gulls Chroicocephalus hartlaubii (hereafter termed the ‘mixed-species’ colony) and was

situated within the human settlement on the island; it contained ca 2,500 pairs of terns in

2013, 800 in 2014 and 8,200 in 2015, when the entire island population bred in this area.

Prey carried by terns visiting the breeding colony was recorded during three successive

breeding seasons: February–May 2013, January–May 2014 and March–May 2015. Prey iden-

tity was assessed with a non-invasive photo-sampling technique, which consists of taking a

sequence of photos (termed a ‘photo-set’) of adult birds flying towards the colony with prey,

allowing for accurate estimation of anchovy standard length (SL) (methods are described in

detail in [31]). Photo-sampling was carried out for several days per week (range 1–7 days)

from incubation until the chicks fledged. Generally, each photo-sampling session lasted from 1

to 3 hr and was carried out randomly throughout the day between civil dawn (ca 6–7h00) and

dusk (ca 18–20h00) from February–May, a period when light levels make photography possi-

ble and when terns breed [33] (S1 Table). An index of breeding stage (pre-laying, incubation,

and different stages of chick-rearing) was obtained from a combination of visual inspection at

the two colonies and detailed observations of images from camera-traps placed within the col-

ony (camera-traps were set to photograph nest contents every day for 1h in the morning and

30 min in the afternoon) (S1 Fig). The breeding phenology of greater crested terns is highly

synchronous [17], and for each colony the week of median hatching was estimated. Breeding

stage was classified as incubation (during which time prey returned are used for displaying or

courtship purposes), early-provisioning (the mean week when chicks are provisioned in the

nest cup), mid-provisioning (the mean week subsequent to early provisioning when chicks

begin to leave the nest) and late-provisioning (the period when adults provision mobile chicks,

invariably in crèches).

Environmental factors

Several environmental factors were investigated to assess their influence on prey returned by

terns to their breeding colonies. Visibility was recorded as the presence or absence of fog

within one hour preceding the photo-sampling and was determined by the observer’s ability to

distinguish landmarks at a known distance (500 m). Hourly wind speed measurements were

obtained from Robben Island weather station (South African Weather Service). Tidal stage,

defined as hours before and after high tide (range from -5 to 6), was obtained from www.tides.

mobilegeographics.com.

Data analysis and statistics

Prey were classified into pelagic species (inhabiting the pelagic zone, including pelagic-neritic

and pelagic-oceanic species, as well as demersal species with pelagic juvenile stages), demersal

fish (inhabiting the sea floor) and bentho-pelagic fish (species living throughout the water col-

umn). Where possible, prey were identified to species or family; very small translucent fish

were classified as fish larvae (mainly anchovy and beaked sandfish Gonorynchus gonorynchus
larvae) and their number recorded. The proportion of each prey species in the total number of
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prey species photographed was calculated, with an annual sample size of at least 3,000 prey

items being considered optimal [31].

Chi-squared goodness-of-fit tests were used to assess differences in diet composition

between incubation and the chick-rearing period within and between seasons. Because

anchovy constituted most of the terns’ diet (65%), ANOVAs followed by Tukey post-hoc tests

were performed to compare mean anchovy SL between seasons, breeding stages and colonies.

Anchovy SL was log10 transformed to fulfil assumptions of normality because the Shapiro test

for normality (function shapiro.test; R package ‘nortest’) indicated that the untransformed data

were not normally distributed. In order to visualize the importance of each prey group in rela-

tion to breeding stage, differences in species composition were plotted in an ordination via

non-metric multidimensional scaling (NMDS) using the R package ‘vegan’ [34]. NMDS is an

unconstrained ordination technique that allows the use of dissimilarity measures appropriate

for ecological data sets, with the use of distance measures to graphically represent relationships

between groups with similar diets in multidimensional space [35, 36]. The Bray–Curtis dissim-

ilarity measure, after the Hellinger transformation [37], was used with NMDS ordination

(with a maximum of 100 iterations) to compare weekly diet variation according to breeding

stage, among the sampling weeks for the two colonies and all years combined. Interpretation

of the NMDS plot relies on relative distances between objects, with objects closer together

being more similar. The function ordiellipse was used to plot ellipses in order to show the cen-

troid corresponding to each breeding stage [35, 38].

The influence of environmental variables on the probability of anchovy capture (dominant

prey) by greater crested terns was assessed using generalised additive models (GAM) to accom-

modate potential non-linear relationships between continuous explanatory variables and the

response [39]. We included the presence or absence of anchovy for each individual observation as

a binary response (i.e., 1 = anchovy, 0 = other prey) and used a binomial error distribution with a

logit link function. Smoother terms included two environmental variables (wind velocity and

tide) and a temporal variable (week), calculated as the chronological week number commencing

from the last week of January (i.e., the beginning of the breeding season; [17]). Week number was

included to control for seasonal variation in anchovy abundance, which may be influenced by the

movement of recruits through their foraging area during the tern’s breeding season [40, 41].

Explanatory variables expressed as factors included visibility (clear vs foggy days), breeding stage,

colony and year. GAMs were fitted using the R package ’mgcv’ [39] with smoother functions gen-

erated using penalised regression splines, an upper limit of 6 on the effective degrees of freedom

(edf) to prevent overfitting, and the degree of smoothness determined by the generalized cross val-

idation criteria [39]. Collinearity between continuous explanatory variables was assessed using

variance inflation factors [42] with a minimum threshold set to 3. The significance level was set at

P< 0.05 for all statistical tests. All computations were carried out in R [43].

Results

Diet of tern chicks and incubating adults

Photo-sampling of tern diet was carried out on 125 days, capturing ca 50,000 photo-sets that

yielded images of 24,607 prey items. Annual sampling sizes were 2,954 prey in 2013, 9,738 in

2014 and 11,915 in 2015. Prey brought back to the colony were dominated by fish (96%),

with< 4% comprised of invertebrates: three cephalopod species, three crustacean species and

four insect taxa (Table 1 and Table 2; S2 Fig). Among the fish prey, at least 38 families and 53

genera, including 13 pelagic, 34 demersal and 6 bentho-pelagic fish species were recorded

(Table 1 and Table 2). Pelagic fish accounted for 94% of all prey (Table 1 and Table 2).

Anchovy was the dominant prey followed by juveniles of redeye round-herring Etrumeus
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Table 1. Numbers and proportions of prey species (and families) photographed in the bills of adult greater crested terns returning to colonies on

Robben Island between 2013 and 2015.

Common name Scientific name Family Habitat N

2013

% N

2014

% N

2015

% N TOT TOT %

Anchovy Engraulis encrasicolus Engraulidae Pelagic 2420 81.92% 6527 67.03% 7259 60.93% 16206 65.518%

Redeye round-

herring

Etrumeus whiteheadi Dussumieriidae Pelagic 92 3.11% 648 6.65% 1817 15.25% 2557 10.338%

Atlantic saury Scomberesox saurus Scomberesocidae Pelagic 45 1.52% 1245 12.78% 368 3.09% 1658 6.703%

Long-snout

pipefish

Syngnathus temminckii Syngnathidae Bentho-

pelagic

41 1.39% 597 6.13% 227 1.91% 865 3.497%

Sardine Sardinops sagax Clupeidae Pelagic 57 1.93% 69 0.71% 419 3.52% 545 2.203%

Horse mackerel Trachurus capensis Carangidae Pelagic 57 1.93% 150 1.54% 201 1.69% 408 1.649%

Beaked sandfish Gonorynchus

gonorynchus

Gonorynchidae Demersal 35 1.18% 23 0.24% 49 0.41% 224 0.906%

Beaked sandfish

larvae

Gonorynchus

gonorynchus

Gonorynchidae Pelagic 1 0.03% 13 0.13% 103 0.86% 127 0.513%

Cape silverside Atherina breviceps Atherinidae Pelagic 3 0.10% 69 0.71% 126 1.06% 198 0.800%

Southern mullet Liza richardsonii Mugilidae Demersal 7 0.24% 21 0.22% 89 0.75% 117 0.473%

Cape hake Merluccius capensis Merlucciidae Demersal 14 0.47% 27 0.28% 35 0.29% 76 0.307%

Elf Pomatomus saltatrix Pomatomidae Pelagic 6 0.20% 23 0.24% 38 0.32% 67 0.271%

Sole spp. Austroglossus spp. (2) Soleidae Demersal 37 1.25% 21 0.22% 5 0.04% 63 0.255%

Gaper Champsodon capensis Champsodontidae Demersal 6 0.20% 13 0.13% 39 0.33% 58 0.234%

Klipfish spp. Clinidae spp. (6) Clinidae Demersal 11 0.37% 14 0.14% 33 0.28% 58 0.234%

Agile klipfish Clinus agilis Clinidae Demersal 1 0.03% 0 0.00% 0 0.00% 1 0.004%

Bull klipfish Clinus taurus Clinidae Demersal 1 0.03% 2 0.02% 0 0.00% 3 0.012%

Bearded klipfish Pavoclinus mentalis Clinidae Demersal 10 0.34% 1 0.01% 2 0.02% 13 0.053%

Grass klipfish Pavoclinus graminis Clinidae Demersal 0 0.00% 0 0.00% 1 0.01%

0.00%

3 0.012%

Cancelloxus

klipfish

Cancelloxus sp. Clinidae Demersal 4 0.14% 0 0.00% 1 0.01% 5 0.020%

Snaky klipfish Blennophis anguillaris Clinidae Demersal 0 0.00% 3 0.03% 4 0.03% 7 0.028%

Soldierfish sp. Holocentridae Demersal 0 0.00% 2 0.02% 45 0.38% 47 0.190%

Bluebottle fish Nomeus gronovii Nomeidae Pelagic 3 0.10% 33 0.34% 9 0.08% 45 0.182%

Cape gurnard Chelidonichthys

capensis

Triglidae Demersal 13 0.44% 5 0.05% 25 0.21% 43 0.174%

Blenny sp. Blenniidae Demersal 2 0.07% 2 0.02% 34 0.29% 38 0.154%

Lantern fish Lampanyctodes

hectorus

Myctophidae Pelagic 1 0.03% 1 0.01% 21 0.18% 23 0.093%

Goby spp. Sufflogobius spp. (2) Gobiidae Demersal 7 0.24% 0 0.00% 2 0.02% 9 0.036%

Bearded goby Sufflogobius bibabartus Gobiidae Demersal 9 0.30% 0 0.00% 14 0.12% 23 0.093%

Chub mackerel Scomber japonicus Scombridae Pelagic 0 0.00% 4 0.04% 18 0.15% 22 0.089%

Shyshark spp. Haploblepharus spp. (2) Scyliorhinidae Demersal 3 0.10% 2 0.02% 11 0.09% 16 0.065%

Grenadier sp. Macrouridae Demersal 0 0.00% 0 0.00% 12 0.10% 12 0.049%

Southern conger Gnathophis capensis Congridae Demersal 3 0.10% 2 0.02% 5 0.04% 11 0.044%

Southern conger

larvae

Gnathophis capensis Congridae Pelagic 0 0.00% 0 0.00% 1 0.01% 1 0.004%

Dolphinfish Coryphaena hippurus Coryphaenidae Pelagic 0 0.00% 10 0.10% 0 0.00% 10 0.040%

Rockfish sp. Sebastes sp. Sebastidae Demersal 1 0.03% 1 0.01% 4 0.03% 6 0.024%

Rocksucker Chorisochismus dentex Gobiesocidae Demersal 1 0.03% 2 0.02% 3 0.03% 6 0.024%

https://doi.org/10.1371/journal.pone.0190444.t001

A non-invasive study of the diet of a seabird breeding in the Benguela region

PLOS ONE | https://doi.org/10.1371/journal.pone.0190444 January 31, 2018 5 / 20

https://doi.org/10.1371/journal.pone.0190444.t001
https://doi.org/10.1371/journal.pone.0190444


Table 2. Numbers and proportions of prey species (and families) photographed in the bills of adult greater crested terns returning to colonies on

Robben Island between 2013 and 2015.

Common name Scientific name Family Habitat N

2013

% N

2014

% N 2015 % N TOT TOT %

Silver

scabbardfish

Lepidotus caudatus Trichiuridae Bentho-

pelagic

1 0.03% 1 0.01% 3 0.03% 5 0.020%

Largehead hairtail Trichiurus lepturus Trichiuridae Bentho-

pelagic

0 0.00% 1 0.01% 3 0.03% 4 0.016%

Pufferfish sp. Tetraodontidae Demersal 0 0.00% 2 0.02% 3 0.03% 5 0.020%

Redfingers Cheilodactylus fasciatus Cheilodactylidae Demersal 2 0.07% 2 0.02% 0 0.00% 4 0.016%

Snake eel sp. Ophichthidae Demersal 0 0.00% 0 0.00% 3 0.03% 4 0.016%

Snake eel sp.

larvae

Ophichthidae Pelagic 0 0.00% 1 0.01% 0 0.00% 1 0.004%

Codlet sp. Bregmacerotidae Pelagic 1 0.03% 0 0.00% 3 0.03% 4 0.016%

Kingklip Genypterus capensis Ophidiidae Demersal 1 0.03% 1 0.01% 1 0.01% 3 0.012%

Carpenter

seabream

Argyrozona argyrozona Sparidae Demersal 0 0.00% 0 0.00% 2 0.02% 2 0.008%

Horsefish sp. Congiopodidae Demersal 0 0.00% 1 0.01% 1 0.01% 2 0.008%

Short alfonsino Centroberyx spinosus Berycidae Bentho-

pelagic

2 0.07% 0 0.00% 0 0.00% 2 0.008%

Brotulid sp. Ophidiidae Demersal 0 0.00% 1 0.01% 0 0.00% 1 0.004%

Greater pipefish Syngnathus acus Syngnathidae Bentho-

pelagic

0 0.00% 1 0.01% 0 0.00% 1 0.004%

Pilot fish Naucrates ductor Carangidae Pelagic 0 0.00% 0 0.00% 1 0.01% 1 0.004%

Shadow driftfish Psenes whiteleggii Nomeidae Bentho-

pelagic

1 0.03% 0 0.00% 0 0.00% 1 0.004%

Slender snipefish Macroramphosus gracilis Centriscidae Pelagic 1 0.03% 0 0.00% 0 0.00% 1 0.004%

Spotted greeneye Chloropthalamus

punctatu

Chlorophthalmidae Demersal 0 0.00% 1 0.01% 0 0.00% 1 0.004%

Streepie Sarpa salpa Sparidae Demersal 0 0.00% 1 0.01% 0 0.00% 1 0.004%

Snakehead

toadfish

Batrichthys apiatus Batrachoididae Demersal 0 0.00% 0 0.00% 1 0.01% 1 0.004%

Trumpetfish sp. Aulostomidae Demersal 1 0.03% 0 0.00% 0 0.00% 1 0.004%

Unidentified larval

fish

12 0.41% 10 0.10% 94 0.79% 116 0.469%

Unidentified fish 5 0.17% 6 0.06% 36 0.30% 47 0.190%

Fish (Total) 2918 98.78% 9559 98.16% 11171 93.76% 23648 96.127%

Cape Hope squid Loligo reynaudii Loliginidae Pelagic 12 0.37% 31 0.32% 11 0.09% 54 0.214%

Cuttlefish sp. Sepia sp. Sepiidae Pelagic 12 0.41% 36 0.37% 37 0.31% 85 0.344%

Octopus Octopus vulgaris Octopodidae Bentho-

pelagic

6 0.20% 1 0.01% 4 0.03% 11 0.044%

Cephalopod

(Total)

30 1.02% 77 0.79% 398 3.34% 505 2.042%

Mantis shrimp Pterygosquilla armata

capensis

Squillidae Demersal 3 0.10% 13 0.13% 228 1.91% 244 0.986%

Swimming crab Brachyura ** Bentho-

pelagic

0 0.00% 0 0.00% 3 0.03% 3 0.012%

Rock lobster Jasus lalandii Palinuridae Demersal 0 0.00% 0 0.00% 3 0.03% 3 0.012%

Crustaceans

(Total)

3 0.10% 13 0.13% 234 1.96% 250 1.007%

Two spotted

cricket

Gryllus bimaculatus Gryllidae Terrestrial 3 0.10% 85 0.87% 103 0.86% 191 0.772%

African mole

cricket

Gryllotalpa africana Gryllotalpidae Terrestrial 0 0.00% 1 0.01% 1 0.01% 2 0.008%

(Continued )
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whiteheadi, Atlantic saury Scomberesox saurus, long-snout pipefish Syngnathus temminckii,
sardine and horse mackerel Trachurus capensis (Table 1). Fish larvae accounted for 0.5% of the

diet (Table 2; S2 Fig).

Inter- and intra-annual variation of prey composition. The proportions of prey species

in the diet of greater crested terns differed significantly between the three breeding seasons

(χ2 = 2597.8, d.f. = 14, p< 0.001). In 2013, anchovy constituted 83% of the diet (by number),

compared to 67% in 2014 and 62% in 2015, with redeye round-herring increasing from 3% in

2013 to 15% in 2015 (Table 1). The proportion of invertebrate prey in the diet also increased

from 1% in 2013 to 6% in 2015. Although fish larvae contributed relatively little to the tern’s

diet, they were most abundant in 2015 (0.8%, Table 2).

Anchovy were the most common prey during all breeding stages, but the diet was more

diverse during incubation and late provisioning than when the adults were feeding small to

mid-sized chicks (Figs 1 & 2). There was a significant difference in prey composition between

prey returned for courtship or display during the incubation period and those returned during

chick provisioning (χ2 = 998.55, d.f. = 6, p< 0.001, Figs 1 & 2). During incubation, in addition

to anchovy, other pelagic species such as redeye round-herring (especially at the mixed colony

during 2015) and horse mackerel were frequently brought back to the colony (Figs 1 & 2).

Once the chicks hatched (early provisioning) the proportion of anchovy in the diet invariably

increased, ranging between 80% and 100%, and there also was a greater proportion of fish lar-

vae (Figs 1 & 3). During mid provisioning the diet was similar to that of the early provisioning

stage (Figs 1 & 2), but the proportion of fish larvae decreased (Fig 3). During late provisioning,

the diet became more diverse, including larger fish species, such as Atlantic saury, redeye

round-herring and sardine, as well as invertebrate prey (Figs 1 & 2).

Prey composition in relation to environmental factors

Tests of covariance between all continuous variables used in the GAMs all had variance infla-

tion factors < 3, so all variables were included in the model. There was a positive relationship

between wind velocities > 5 m s-1 on the proportion of anchovy returned to the colony (edf =

3.6, χ2 = 123.9 p< 0.001, Fig 4). The influence of tide, although significant, was very weak,

with slightly higher probabilities of anchovy returned during the first peak of low tide (-5 hrs)

and in between low and high tides (3 hrs) (edf = 4.8, χ2 = 53.23 p< 0.001, Fig 4). The propor-

tion of anchovy returned to the colony generally decreased over the course of the breeding sea-

son, with a first peak of anchovy occurring during week 6 (1st week of March) and a second

peak occurring during week 12 (3rd week of April) (edf = 4.9, χ2 = 1309.5 p< 0.001, Fig 4).

Visibility had a negative influence on the proportion of anchovy returned with a 59% lower

probability of returning anchovy during foggy weather (Table 3). More anchovies were

Table 2. (Continued)

Common name Scientific name Family Habitat N

2013

% N

2014

% N 2015 % N TOT TOT %

Butterfly/moth Lepidoptera sp. Sphingidae Terrestrial 0 0.00% 0 0.00% 3 0.03% 3 0.012%

Beetle Coleoptera sp. Coleoptera * Terrestrial 0 0.00% 0 0.00% 1 0.01% 1 0.004%

Insect spp

(Total)

3 0.10% 89 0.91% 112 0.94% 204 0.825%

Totals 2954 9738 11915 24607

* Infraorder

** Order

https://doi.org/10.1371/journal.pone.0190444.t002
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returned to the colony in 2013 than 2014 or 2015, and when both colonies were active during

2013 and 2014, anchovy were returned to the single-species colony with a lower probability

than to the mixed-species colony (Table 3).

Fig 1. Fine-scale weekly variation in greater crested tern diet by mean frequency by number of the four major fish prey (anchovy,

Atlantic saury, redeye round-herring and sardine), other fish (OF) and invertebrate prey (IP). Sampling locations were at the single-

species colony (a) and mixed colony (b) at Robben Island across breeding seasons and stages. Breeding stages are illustrated as (i) incubation

period, (ii) early, (iii) mid and (iv) late provisioning.

https://doi.org/10.1371/journal.pone.0190444.g001
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Anchovy size

Excluding larvae, anchovy standard length ranged from 32 mm to 125 mm (mean ± SD for all

years combined: 83.9 ± 16.8 mm). Inter-annual differences in anchovy SL were significant

(ANOVA: F(2,883) = 81.48, p< 0.001, n = 886) with larger anchovies caught in 2015 (mean ±
SD: 92 ± 16 mm) than in 2013 (84 ± 16 mm) or 2014 (76 ± 15 mm) (Tukey test, p< 0.001).

The anchovy brought back during incubation at both colonies were significantly larger

(mean ± SD: 85 ± 13 mm) (Table 4) than those recorded during early and mid provisioning

(mean ± SD, early: 77 ± 20 mm; mid: 74 ± 15 mm), but similar in size to those delivered during

late provisioning (mean ± SD, 85 ± 14 mm; Table 4). Results were similar when considering

the two colonies separately, but differences were only significant at the mixed-species colony

(Table 4, Fig 5).

Fig 2. Non-metric multidimensional scaling plots (NMDS) of weekly mean proportions, showing

differences in prey composition per breeding stage of greater crested tern diet across three breeding

seasons (2013–2015) at both colonies at Robben Island. Sample points represent each sampled week

divided by the stage of the colony (see legend). Position of points is related to the relative weekly contribution

of each of the eight major prey groups. Grey shaded ellipses were used to highlight the centre of gravity of

breeding phases: a) Incubation; b) Early provisioning; c) Mid provisioning; d) Late provisioning. (Prey groups:

ANCH = Anchovy; REDR = Redeye round-herring; SAUR = Atlantic saury; HORSM = Horse mackerel;

SAR = Sardine; PIPF = Pipefish; OFISH = other fish; IPREY = invertebrate prey).

https://doi.org/10.1371/journal.pone.0190444.g002
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Discussion

Our study describes the prey exploited by the largest breeding aggregation of greater crested

terns in southern Africa during three successive breeding seasons. As for previous studies in

the Western Cape, greater crested terns mainly targeted small schooling Clupeiformes, primar-

ily relying on anchovy and, to a lesser extent, redeye round-herring, two of the most common

Fig 3. Dietary contribution in terms of mean frequency of larvae in (a) the single-species colony (2013–2014) and (b) the mixed colony (2014–2015) at

Robben Island during different breeding stages, (i) incubation period, (ii) early, (iii) mid and (iv) late provisioning. * no data available from 2013 at mixed

colony.

https://doi.org/10.1371/journal.pone.0190444.g003
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Fig 4. GAM partial predictions for the probability of anchovy occurring in the greater crested terns’

diet according to (a) wind velocity, (b) tide and (c) week from the onset of breeding. Tidal stage (b) is

defined as hours before and after high tide (high tide = 0). Week (c) represents the sequence of weeks

commencing from the last week of January (1) until the 2nd week of May (15). Data are from the 2013–2015

breeding seasons on Robben Island. s(x,y) is the smoothing term, with x the explanatory variable and y the

estimated degrees of freedom of the smoothing term. The pointwise 95% confidence intervals are shown as

dashed lines for each model fit.

https://doi.org/10.1371/journal.pone.0190444.g004

Table 3. Parametric coefficients of fixed effects used in the generalised additive models (GAM) used

to assess the influence of non-linear variables (wind velocity, tide and week) on the presence of

anchovy in the diet of greater crested terns.

Model term Estimates Std. Error P value

Intercept 3.01 0.096 < 0.001

Weather (foggy) -0.90 0.066 < 0.001

Year (2014) -0.70 0.063 < 0.001

Year (2015) -1.71 0.081 < 0.001

Colony (single-species) -1.61 0.085 < 0.001

Breeding stage (incubation) -1.44 0.102 < 0.001

Breeding stage (late) -0.39 0.100 < 0.001

Breeding stage (mid) -0.06 0.079 0.41

https://doi.org/10.1371/journal.pone.0190444.t003
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mid-trophic fish species in the Benguela upwelling region [23, 44]. Despite the dominance of

Clupeiformes in their diet during this study, greater crested terns demonstrated considerable

foraging plasticity with the ability to capture demersal fish as well as cephalopods and arthro-

pods (Table 1 and Table 2, [45]). Previous knowledge of greater crested tern diet in southern

Africa came from the collection of chick regurgitations and observations of prey fed to chicks

[20, 21]. However, both these methods are subject to methodological limitations, including

biases introduced by differential prey regurgitation [46] or the potential misidentification of

prey based solely on instantaneous observations [47]. Our study gives novel information on

prey composition, with insights into flexible foraging strategies.

Table 4. Mean (SD and Tukey test adjusted p-values from comparisons of anchovy standard length (mm) estimated from photo-samples com-

pared across breeding stages and colonies in all years at Robben Island. Breeding phases are referred as (i) incubation period, (ii) early, (iii) mid and

(iv) late provisioning.

Both colonies combined Single-species colony Mixed-species colony

P adj P adj P adj

Breeding stage mean (SD) mm Early Mid Late mean (SD) mm Early Mid Late mean (SD) mm Early Mid Late

Incubation 85 (13) < 0.01 < 0.01 0.99 80 (9) 0.32 0.02 0.99 92 (14) < 0.01 < 0.01 0.78

Early 77 (20) - 0.93 < 0.01 74 (12) - 0.99 0.14 77 (21) - 0.99 < 0.01

Mid 74 (15) - - < 0.01 74 (13) - - < 0.01 76 (15) - - < 0.01

Late 85 (14) - - - t82 (14) - - - 88 (14) - - -

https://doi.org/10.1371/journal.pone.0190444.t004

Fig 5. Anchovy standard length in the diet of greater crested terns across four breeding stages. Breeding phases are the incubation period (Incub.),

early- (Early), mid- (Mid) and late-provisioning (Late) periods. Data are from the single-species colony (a) in 2013 and (b) in 2014, at the mixed colony (c) in

2013 and (d) in 2014, and (e) in 2015 across breeding stages in Robben Island.

https://doi.org/10.1371/journal.pone.0190444.g005
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Prey diversity and prey ecology

Our photo-sampling technique revealed at least 28 new species of fish, one cephalopod, two

crustaceans and three species of insects previously not recorded in the tern’s diet. A large

diversity of prey also has been reported in the diets of greater crested terns in Australia [19,

48], reflecting this species’ considerable foraging plasticity. Breeding greater crested terns rely

mostly on anchovy, which is an abundant pelagic fish in the southern Benguela system and

provides high energetic value for growing chicks [22, 49, 50]. After anchovy, the second most

abundant prey in the tern’s diet was redeye round-herring, which is also an important mid-

trophic level species in this system [22, 51]. It was particularly abundant in the diet during mid

to late chick provisioning. During the day, redeye schools descend into deeper water [12], but

their presence in the tern’s diet may be explained by the fact that juvenile fish are found near

the surface in inshore waters where they form mixed schools with anchovy and juvenile sar-

dine [51]. In addition, other predators such as African penguins or dolphins, may force

redeyes and other mid-water species, such as lantern fish Lampanyctodes hectorus, to the sur-

face, making them available to terns [52, 53]. Atlantic saury were particularly abundant in the

diet when adults were provisioning fledglings, as observed in Cape gannets [5] and roseate

terns Sterna dougalli in the Azores [54]. Due to their relatively large size and high energy con-

tent [49], saury are ideal prey to be fed to large chicks. Although saury normally have an off-

shore distribution, longitudinal migration of this species, which brings shoals closer inshore

during autumn [55], may increase availability to terns during the later stages of the breeding

season.

Long-snout pipefish, a widespread species in coastal waters [56], were recorded for the first

time in the diet of greater crested terns. Although often associated with benthic habitats, it can

occur in mid water. Other species, such as redfingers Cheilodactylus fasciatus, rocksuckers

Chorisochismus dentex, blennidae, clinidae or soleidae, which are bottom dwellers, are likely

captured in shallow coastal habitats, including tidal pools. Some of the demersal fish species

recorded live near the sea surface as juveniles, including beaked sandfish and bluebottle fish

Nomeus gronovii [56], and are captured by terns at this life stage. Like beaked sandfish, juvenile

Cape hakeMerluccius capensis can occur near the surface during the daytime [57, 58]. Small

hake may be captured early in the morning as they migrate to the surface at night to feed on

fish and crustaceans [56]. The occasional presence of mantis shrimps Pterygosquilla armata in

the tern’s diet likely results from these crustaceans periodically migrating into surface waters

[59] and the occasional presence of terrestrial prey (e.g., crickets) suggests that insects may be

captured opportunistically when they aggregate in the vicinity of the colony [45].

Factors affecting the temporal variation in greater crested tern diet

A key strength of our study comes from monitoring tern diet throughout the breeding season,

which provided an index of the relative abundance of prey types and sizes of anchovy. How-

ever, this index incorporates some amount of selection by terns on prey type and size returned

to the colony. The proportions and sizes of the main prey varied between incubation and chick

provisioning. Small anchovies were most abundant during the first phases of provisioning

(early: SL = 77 ± 20 mm; mid: SL = 74 ± 15 mm), compared to late provisioning when other

large species were also abundant and anchovy SL was significantly larger (85 ± 14 mm). These

results support the ontogenetic differences in food requirements between adults and chicks

reported for greater crested terns found in Australia [9] and for other seabird species (e.g., [47,

60–62]). The preponderance of small anchovies and fish larvae delivered during early chick

provisioning presumably are related to the limited gape and gut capacity of hatchlings, but still

provide chicks with the benefits of high calorific value prey [49]. In Australia, the Australian
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anchovy Engraulis australis and sardine were the most abundant prey of breeding greater

crested terns and a comparison with chick regurgitations confirmed that prey were smaller on

average during early provisioning than when chicks were larger and more mobile [19]. Deliv-

ering larger prey to large chicks reflects the increased energetic demands at this stage, when

parents have to maximise the efficiency of each foraging trip, bringing back as much food as

possible as predicted by central place foraging models for single prey loaders [10, 63, 64].

Our study suggests that adult prey choice is influenced by their chick’s stage, but prey

choice also is influenced by the spatio-temporal availability of prey (e.g., [65]) and the extent

to which this may influence the greater crested terns’ diet should not be discounted. Most

anchovy delivered by greater crested terns were recruits (SL< 100 mm), which were recorded

during all breeding stages. Based on the movements of anchovy recruits in the Benguela

region, young-of-the-year anchovy would only be expected to reach Robben Island after May

[40, 41, 66], i.e., toward the end of the greater crested tern breeding season when most chicks

have fledged. Our findings contradict this general trend, with anchovy (mostly recruits)

decreasing in abundance as the breeding season progressed from February to May. During late

provisioning, parents could have buffered scarcity of anchovy by targeting alternative available

prey, some of which are known to move closer to shore at that time (e.g., Atlantic saury, [55])

or which could be found at more distant feeding grounds, as parents generally perform longer

foraging trips during this period [67]. The foraging range of greater crested terns breeding in

southern Africa is currently unknown; but is assumed to be ca 10 km [20]. This restricted spa-

tial range in which terns acquire their food, combined with competition with other short-

range foragers which breed concurrently at Robben Island (e.g., African penguin; foraging

range ca 40 km) may result in a local depletion of resources, referred to as ‘Ashmole’s halo’

[68]. However, the magnitude of the terns’ impacts on anchovy stocks around the breeding

colony are unknown.

Breeding is often timed to coincide with the peak availability of food [69], either during the

weeks leading up to breeding, when adult body condition can play a significant role in mediat-

ing breeding success [70, 71], or during subsequent breeding stages when food supplies are

critical for chick or fledgling survival [72]. Unfortunately, there are scant data on the temporal

abundance of anchovy around Robben Island during the terns’ breeding season [73]. Based on

monthly counts of anchovy and sardine eggs and larvae ca 30 km south of Robben Island

between 1995 and 2001, [40] reported a clear peak in the abundance of anchovy larvae during

January and February, which may influence tern breeding phenology.

Prey choice by visual predators may be influenced by physical conditions while foraging

[74]. For example, strong winds increase prey catch rates in sandwich Thalasseus sandvicensis,
common Sterna hirundo and Damara terns Sternula balaenarum [75, 76]. Our study found

that the proportion of anchovy increased at wind speeds> 5 m s-1. Strong winds may elevate

zooplankton in the water column and influence the vertical location of anchovy [77, 78], or

increase flight efficiency allowing terns to travel further where more anchovy may be available.

Alternatively, at high wind speeds there is reduced detection of prey, hence terns have to rely

on other cues for prey location (e.g., through local enhancement, [79, 80]). In the Western

Cape, greater crested terns are likely to frequently encounter Cape cormorants and African

penguins foraging on anchovy [21]. Therefore, the positive correlation between the proportion

of anchovy in the diet and increased wind speeds may be linked to the prey preferences of

these other predators. The smaller proportion of anchovy returned to the colony on foggy days

(Table 3, Fig 4) suggests that terns struggle to find anchovy schools when visibility is poor

because they are less able to detect heterospecific feeding groups, necessitating a switch to a

more opportunistic foraging behaviour [81].
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Coping in an exploited environment

Despite anchovy dominating the diet of greater crested terns during the breeding season, our

results demonstrate the terns’ ability to take advantage of feeding opportunities on prey that is

less abundant or has a lower energetic value [45, 82] Such foraging plasticity in combination

with their varied foraging methods (e.g., plunge diving, surface-seizing, scavenging, kletpopar-

asitism, diving from perches, taking prey in flight as well as from off the ground) [17, 45, 82],

may be a key characteristic in locations where Clupeiformes have become scarce and patchily

distributed at small temporal and spatial scales [83]. For example, in the northern Benguela off

Namibia, terns predominantly feed their chicks juvenile bearded goby Sufflogobius bibarbatus
(J.-P. Roux pers. comm.), which is locally abundant, albeit low in energetic content [4]. This

adaptability may underpin the tern’s capacity to cope in a highly dynamic and heterogeneous

environment such as the Benguela upwelling region [84]. However, as the Benguela ecosystem

has been recently exposed to considerable modification resulting from environmental changes

and anthropogenic effects [22] it is difficult to disentangle the influence of synergistic changes

(e.g., climate change and fisheries; [85]). The foraging plasticity of the greater crested tern may

be postulated as a short-term response to climate change; a key factor that allows this predator

to thrive in comparison to other more specialist seabirds.

Conclusions

This is the first investigation of diet in a single prey-loading seabird using a method that allows

for intensive sampling over protracted periods with little disturbance [31]. The study greatly

increased our knowledge of prey caught by the southern African population of greater crested

terns during the breeding season, offering new insights into the relationships between preda-

tors and prey in the Benguela upwelling region. Flexible foraging strategies are often the most

effective short-term responses to climate change and may buffer predators against the uncer-

tainty of locating food in a stochastic and exploited system such as the Benguela region [28]. In

such areas, due to their restricted foraging range when breeding and the availability of a real-

time monitoring method with limited sampling effort and disturbance [86], greater crested

terns may be important ocean sentinels indicating localized human-induced alterations in

common and non-commercialized species. The non-invasive method used in this study offers

a fine-scale window into their diet and behaviour that can be implemented to undertake sys-

tematic and detailed monitoring of changes in the availability of prey in the vicinity of breed-

ing colonies. Comprehensive long-term diet studies will contribute to our understanding of

how greater crested terns cope with the apparent variation in food availability better than

other seabird species relying on the same primary food resource and breeding in the same

marine ecosystem.

Supporting information

S1 Table. Time spent (in hours) photo-sampling for each week of the month. Sampling

data is shown per colony and years.

(PDF)

S1 Fig. Example of camera-trap photographs recording the breeding stage of a subsample

of nests within the colony. (Top) Photograph recorded on the 03/23/2015 at 9:27:04 showing

an adult sitting on an egg. (Bottom) photograph of the same nest recorded on the same day 3.5

minutes later, showing the egg has hatched.

(TIF)
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S2 Fig. Examples of prey returned to the colony by adult greater crested terns. From A to

N: A) klipfish Clinid sp.; B) octopus Octopus vulgaris; C) Cape hope squid Loligo vulgaris
reynaudii; D) rocksucker Chorisochismus dentex; E) spotted greeneye Chloropthalamus puncta-
tus; F) greater pipefish Syngnathus acus; G) kingklip Genypterus capensis; H) redfingers Cheilo-
dactylus fasciatus; I) southern conger Gnathophis capensis; J) crab Brachyura; K) toadfish

Batrichthy sapiatus; L) hawk-moth Sphingidae; M) grenadier Macrouridae; N) silver scabbard-

fish Lepidopus caudatus.
(TIF)
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